$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Thermal and Thermomechanical Behaviour of Polycaprolactone and Starch/Polycaprolactone Blends for Biomedical Applications 원문보기

Macromolecular materials and engineering, v.290 no.8, 2005년, pp.792 - 801  

Wang, Yaming (3B's Research Group –) ,  Rodriguez-Perez, Miguel A. (Biomaterials, Biodegradables and Biomimetics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal) ,  Reis, Rui L. (Department of Condensed Matter Physics, University of Valladolid, E-47011 Valladolid, Spain) ,  Mano, João F. (3B's Research Group –)

Abstract AI-Helper 아이콘AI-Helper

Summary: Polycaprolactone (PCL) and starch/PCL blends (SPCL) are shown to have the potential to be used in a range of biomedical applications and can be processed with conventional melting-based procedures. In this paper, the thermal and thermomechanical analyses of PCL and SPCL were performed, usin...

주제어

참고문헌 (46)

  1. Chandra, R, Rustgi, Renu. Biodegradable polymers. Progress in polymer science, vol.23, no.7, 1273-1335.

  2. 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X 

  3. 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J 

  4. Winzenburg, Gesine, Schmidt, Carsten, Fuchs, Stefan, Kissel, Thomas. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Advanced drug delivery reviews, vol.56, no.10, 1453-1466.

  5. Koenig, M.F., Huang, S.J.. Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer, vol.36, no.9, 1877-1882.

  6. Bastioli, C., Cerutti, A., Guanella, I., Romano, G. C., Tosin, M.. Physical state and biodegradation behavior of starch-polycaprolactone systems. Journal of environmental polymer degradation, vol.3, no.2, 81-95.

  7. Bastioli, Catia. Properties and applications of Mater-Bi starch-based materials. Polymer degradation and stability, vol.59, no.1, 263-272.

  8. 10.1002/(SICI)1097-4628(19991209)74:11<2594::AID-APP5>3.0.CO;2-R 

  9. Averous, L., Moro, L., Dole, P., Fringant, C.. Properties of thermoplastic blends: starch–polycaprolactone. Polymer, vol.41, no.11, 4157-4167.

  10. Yavuz, Hülya, Babaç, Ceyhun. Preparation and Biodegradation of Starch/Polycaprolactone Films. Journal of polymers and the environment, vol.11, no.3, 107-113.

  11. Singh, R.P, Pandey, J.K, Rutot, D, Degée, Ph, Dubois, Ph. Biodegradation of poly(ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydrate research, vol.338, no.17, 1759-1769.

  12. Azevedo, H. S., Gama, F. M., Reis, R. L.. In Vitro Assessment of the Enzymatic Degradation of Several Starch Based Biomaterials. Biomacromolecules, vol.4, no.6, 1703-1712.

  13. Mano, J. F., Koniarova, D., Reis, R. L.. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of materials science, Materials in medicine, vol.14, no.2, 127-135.

  14. Kweon, Dong-Keon, Kawasaki, Norioki, Nakayama, Atsuyoshi, Aiba, Seiichi. Preparation and characterization of starch/polycaprolactone blend. Journal of applied polymer science, vol.92, no.3, 1716-1723.

  15. Mano, João F, Sousa, Rui A, Boesel, Luciano F, Neves, Nuno M, Reis, Rui L. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites science and technology, vol.64, no.6, 789-817.

  16. Gomes, Manuela E., Sikavitsas, Vassilios I., Behravesh, Esfandiar, Reis, Rui L., Mikos, Antonios G.. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of biomedical materials research. Part A, vol.a67, no.1, 87-95.

  17. Oliveira, A. L., Reis, R. L.. Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based process. Journal of materials science, Materials in medicine, vol.15, no.4, 533-540.

  18. Costa, S. A., Reis, R. L.. Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics. Journal of materials science, Materials in medicine, vol.15, no.4, 335-342.

  19. Alves, C. M., Reis, R. L., Hunt, J. A.. Preliminary study on human protein adsorption and leukocyte adhesion to starch-based biomaterials. Journal of materials science, Materials in medicine, vol.14, no.2, 157-165.

  20. Marques, A. P., Reis, R. L., Hunt, J. A.. Evaluation of the potential of starch-based biodegradable polymers in the activation of human inflammatory cells. Journal of materials science, Materials in medicine, vol.14, no.2, 167-173.

  21. 10.1002/(SICI)1097-4628(19960926)61:13<2455::AID-APP25>3.0.CO;2-1 

  22. Cyras, Viviana P., Vázquez, Analía, Kenny, José M.. Crystallization kinetics by differential scanning calorimetry for PCL/starch and their reinforced sisal fiber composites. Polymer engineering and science, vol.41, no.9, 1521-1528.

  23. Ruseckaite, R. A., Stefani, P. M., Cyras, V. P., Kenny, J. M., Vázquez, A.. Temperature and crystallinity profiles generated in a polycaprolactone/starch blend under different cooling conditions. Journal of applied polymer science, vol.82, no.13, 3275-3283.

  24. Anelastic and Dielectric Effects in Polymer Solids McCrum N. G. 1991 

  25. Viscoelastic Properties of Polymers Ferry J. D. 1980 

  26. 10.1007/978-94-010-0305-6_10 

  27. Mani, Ramaswamy, Bhattacharya, Mrinal. Properties of injection moulded blends of starch and modified biodegradable polyesters. European polymer journal, vol.37, no.3, 515-526.

  28. Hohne, G.W.H., Schawe, J., Schnick, C.. Temperature calibration on cooling using liquid crystal phase transitions. Thermochimica acta, vol.221, no.1, 129-137.

  29. Crescenzi, V., Manzini, G., Calzolari, G., Borri, C.. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. European polymer journal, vol.8, no.3, 449-463.

  30. Jang, Jyongsik, Lee, Dong Kweon. Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer, vol.44, no.26, 8139-8146.

  31. Cebe, P., Hong, S.-D.. Crystallization behaviour of poly(ether-ether-ketone). Polymer, vol.27, no.8, 1183-1192.

  32. Ke, Tianyi, Sun, Xiuzhi. Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. Journal of applied polymer science, vol.89, no.5, 1203-1210.

  33. Dobreva, A., Gutzow, I.. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. Journal of non-crystalline solids, vol.162, no.1, 13-25.

  34. ALONSO, M., VELASCO, J., de SAJA, J.. CONSTRAINED CRYSTALLIZATION AND ACTIVITY OF FILLER IN SURFACE MODIFIED TALC POLYPROPYLENE COMPOSITES. European polymer journal, vol.33, no.3, 255-262.

  35. Di@?ez-Gutierrez, S., Rodri@?guez-Perez, M., De Saja, J., Velasco, J.. Dynamic mechanical analysis of injection-moulded discs of polypropylene and untreated and silane-treated talc-filled polypropylene composites. Polymer, vol.40, no.19, 5345-5353.

  36. Velasco, J.I, Morhain, C, Martı́nez, A.B, Rodrı́guez-Pérez, M.A, de Saja, J.A. The effect of filler type, morphology and coating on the anisotropy and microstructure heterogeneity of injection-moulded discs of polypropylene filled with aluminium and magnesium hydroxides. Part 2. Thermal and dynamic mechanical properties. Polymer, vol.43, no.25, 6813-6819.

  37. Ozawa, T.. Kinetics of non-isothermal crystallization. Polymer, vol.12, no.3, 150-158.

  38. Liu, Tianxi, Mo, Zhishen, Wang, Shanger, Zhang, Hongfang. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polymer engineering and science, vol.37, no.3, 568-575.

  39. Di Lorenzo, M.L., Silvestre, C.. Non-isothermal crystallization of polymers. Progress in polymer science, vol.24, no.6, 917-950.

  40. Wang, Yaming, Shen, Changyu, Li, Haimei, Li, Qian, Chen, Jingbo. Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites. Journal of applied polymer science, vol.91, no.1, 308-314.

  41. Wang, Yaming, Shen, Changyu, Chen, Jinbo. Nonisothermal Cold Crystallization Kinetics of Poly(ethylene terephthalate)/Clay Nanocomposite. Polymer journal, vol.35, no.11, 884-884.

  42. Kim, Seong Hun, Ahn, Seon Hoon, Hirai, Toshihiro. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer, vol.44, no.19, 5625-5634.

  43. Day, M.; Cooney, J. D. etc. "Thermal Analysis of Some Environmentally Degradable Polymers." Journal of thermal analysis and calorimetry, v.52 no.2 (1998), pp. 261-274, doi:10.1023/A:1010195105547.

  44. Angell, C.A.. Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems. Journal of non-crystalline solids, vol.131, no.1, 13-31.

  45. Böhmer, R., Ngai, K. L., Angell, C. A., Plazek, D. J.. Nonexponential relaxations in strong and fragile glass formers. The Journal of chemical physics, vol.99, no.5, 4201-4209.

  46. Buechner, P. M., Lakes, R. S., Swan, C., Brand, R. A.. A Broadband Viscoelastic Spectroscopic Study of Bovine Bone: Implications for Fluid Flow. Annals of biomedical engineering, vol.29, no.8, 719-728.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로