$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Polycaprolactone/starch composite: Fabrication, structure, properties, and applications

Journal of biomedical materials research. Part A, v.103 no.7, 2015년, pp.2482 - 2498  

Ali Akbari Ghavimi, Soheila (Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia) ,  Ebrahimzadeh, Mohammad H. (Orthopedic Research Center, Mashhad University of Medical Science, Mashhad, Iran) ,  Solati‐Hashjin, Mehran (Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia) ,  Abu Osman, Noor Azuan (Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia)

Abstract

AbstractInterests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater‐Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103: 2482–2498, 2015.

Keyword

참고문헌 (206)

  1. Labet M , Thielemans W , Dufresne A . Polymer grafting onto starch nanocrystals . Biomacromolecules 2007 ; 9 : 2916 – 2927 . 

  2. Demirgöz D , Elvira C , Mano JF , Cunha AM , Piskin E , Reis RL . Chemical modification of starch based biodegradable polymeric blends: Effects on water uptake, degradation behaviour and mechanical properties . Polym Degrad Stabil 2000 ; 2 : 161 – 170 . 

  3. Loercks J . Properties and applications of compostable starch‐based plastic material . Polym Degrad Stabil 1998 ; 1 : 245 – 249 . 

  4. Matzinos P , Tserki V , Kontoyiannis A , Panayiotou C . Processing and characterization of starch/polycaprolactone products . Polym Degrad Stabil 2002 ; 1 : 17 – 24 . 

  5. Gomes ME , Reis R , Cunha A , Blitterswijk C , De Bruijn J . Cytocompatibility and response of osteoblastic‐like cells to starch‐based polymers: Effect of several additives and processing conditions . Biomaterials 2001 ; 13 : 1911 – 1917 . 

  6. Salgado A , Gomes ME , Chou A , Coutinho O , Reis R , Hutmacher D . Preliminary study on the adhesion and proliferation of human osteoblasts on starch‐based scaffolds . Mater Sci Eng C 2002 ; 1 : 27 – 33 . 

  7. Silva G , Costa F , Neves N , Coutinho O , Dias ACP , Reis R . Entrapment ability and release profile of corticosteroids from starch‐based microparticles . J Biomed Mater Res A 2005 ; 2 : 234 – 243 . 

  8. Reis R , Cunha A . New degradable load‐bearing biomaterials composed of reinforced starch based blends . J Appl Med Polym 2000 ; 4 : 1 – 5 . 

  9. Mendes SC , Reis R , Bovell YP , Cunha A , van Blitterswijk CA , de Bruijn JD . Biocompatibility testing of novel starch‐based materials with potential application in orthopaedic surgery: A preliminary study . Biomaterials 2001 ; 14 : 2057 – 2064 . 

  10. Espigares I , Elvira C , Mano JF , Vázquez B , San Román J , Reis RL . New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers . Biomaterials 2002 ; 8 : 1883 – 1895 . 

  11. Marques A , Reis R , Hunt J . The biocompatibility of novel starch‐based polymers and composites: In vitro studies . Biomaterials 2002 ; 6 : 1471 – 1478 . 

  12. Kaur L , Singh J , Liu Q . Starch—a Potential Biomaterial for Biomedical Application . In: Mozarafi MR , editor. Nanomaterials and Nanosystems for Biomedical Applications . Springer ; 2007 . p 83 – 98 . 

  13. Salgado A , Coutinho O , Reis R . Novel starch‐based scaffolds for bone tissue engineering: Cytotoxicity, cell culture, and protein expression . Tissue Eng 2004 ; 3 : 465 – 474 . 

  14. Salgado A , Coutinho O , Reis R , Davies J . In vivo response to starch‐based scaffolds designed for bone tissue engineering applications . J Biomed Mater Res A 2007 ; 4 : 983 – 989 . 

  15. Désévaux C , Dubreuil P , Lenaerts V , Girard C . Tissue reaction and biodegradation of implanted cross‐linked high amylose starch in rats . J Biomed Mater Res A 2002 ; 6 : 772 – 779 . 

  16. Martins AM , Kretlow JD , Costa‐Pinto AR , Malafaya PB , Fernandes EM , Neves NM , Alves CM , Mikos AG , Kasper FK , Reis RL . Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation . J Biomed Mater Res A 2012 ; 3 : 599 – 612 . 

  17. Pereira C , Cunha A , Reis R , Vazquez B , San Roman J . New starch‐based thermoplastic hydrogels for use as bone cements or drug‐delivery carriers . J Mater Sci Mater Med 1998 ; 12 : 825 – 833 . 

  18. Malafaya P , Elvira C , Gallardo A , San Roman J , Reis R . Porous starch‐based drug delivery systems processed by a microwave route . J Biomater Sci Polym Ed 2001 ; 11 : 1227 – 1241 . 

  19. Elvira C , Mano J , San Roman J , Reis R . Starch‐based biodegradable hydrogels with potential biomedical applications as drug delivery systems . Biomaterials 2002 ; 9 : 1955 – 1966 . 

  20. Mahkam M . Starch‐based polymeric carriers for oral‐insulin delivery . J Biomed Mater Res A 2010 ; 4 : 1392 – 1397 . 

  21. Liu H , Xie F , Yu L , Chen L , Li L . Thermal processing of starch‐based polymers . Prog Polym Sci 2009 ; 12 : 1348 – 1368 . 

  22. Hyang Aee L , Nam Hie K , Nishinari K . DSC and rheological studies of the effects of sucrose on the gelatinization and retrogradation of acorn starch . Thermochim Acta 1998 ; 1 : 39 – 46 . 

  23. Rosa D , Lopes D , Calil M . Thermal properties and enzymatic degradation of blends of poly(ε‐caprolactone) with starches . Polym Test 2005 ; 6 : 756 – 761 . 

  24. Slattery CJ , Kavakli IH , Okita TW . Engineering starch for increased quantity and quality . Trends Plant Sci 2000 ; 7 : 291 – 298 . 

  25. Avérous L . Biodegradable multiphase systems based on plasticized starch: A review . J Macromol Sci‐Pol R 2004 ; 3 : 231 – 274 . 

  26. Zeleznak K , Hoseney R . The glass transition in starch . Cereal Chem 1987 ; 2 : 121 – 124 . 

  27. Sarazin P , Li G , Orts WJ , Favis BD . Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch . Polymer 2008 ; 2 : 599 – 609 . 

  28. Averous L , Moro L , Dole P , Fringant C . Properties of thermoplastic blends: Starch–polycaprolactone . Polymer 2000 ; 11 : 4157 – 4167 . 

  29. Dole P , Joly C , Espuche E , Alric I , Gontard N . Gas transport properties of starch based films . Carbohydr Polym 2004 ; 3 : 335 – 343 . 

  30. Wan Y , Luo H , He F , Liang H , Huang Y , Li X . Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fiber‐reinforced starch biocomposites . Compos Sci Technol 2009 ; 7 : 1212 – 1217 . 

  31. Xie F , Pollet E , Halley PJ , Averous L . Starch‐based nano‐biocomposites . Prog Polym Sci 2013 ; 10 : 1590 – 1628 . 

  32. Chivrac F , Pollet E , Avérous L . Progress in nano‐biocomposites based on polysaccharides and nanoclays . Mater Sci Eng 2009 ; 1 : 1 – 17 . 

  33. Ratto JA , Stenhouse PJ , Auerbach M , Mitchell J , Farrell R . Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system . Polymer 1999 ; 24 : 6777 – 6788 . 

  34. Vaidya UR , Bhattacharya M . Properties of blends of starch and synthetic polymers containing anhydride groups . J Appl Polym Sci 1994 ; 5 : 617 – 628 . 

  35. Rutot D , Degée P , Narayan R , Dubois P . Aliphatic polyester‐grafted starch composites by in situ ring opening polymerization . Compos Interface 2000 ; 3 : 215 – 225 . 

  36. Zhang Y , Leng Y , Zhu M , Fan B , Yan R , Wu Q . Starches modified with polyurethane microparticles: Effects of hydroxyl numbers of polyols in polyurethane . Carbohydr Polym 2012 ; 4 : 1208 – 1213 . 

  37. Chen L , Ni Y , Bian X , Qiu X , Zhuang X , Chen X , et al. A novel approach to grafting polymerization of ε‐caprolactone onto starch granules . Carbohydr Polym 2005 ; 1 : 103 – 109 . 

  38. Belard L , Dole P , Averous L . Study of pseudo‐multilayer structures based on starch‐polycaprolactone extruded blends . Polym Eng Sci 2009 ; 6 : 1177 – 1186 . 

  39. Wang X‐L , Yang K‐K , Wang Y‐Z . Properties of starch blends with biodegradable polymers . J Macromol Sci Polym R 2003 ; 3 : 385 – 409 . 

  40. Martins AM , Santos MI , Azevedo HS , Malafaya PB , Reis RL . Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications . Acta Biomater 2008 ; 6 : 1637 – 1645 . 

  41. Liu F , Qin B , He L , Song R . Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties . Carbohydr Polym 2009 ; 1 : 146 – 150 . 

  42. Zeng J‐B , Jiao L , Li Y‐D , Srinivasan M , Li T , Wang Y‐Z . Bio‐based blends of starch and poly (butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption . Carbohydr Polym 2011 ; 2 : 762 – 768 . 

  43. Pereira JD , Camargo RC , Alves N , Rodriguez‐Perez MA , Constantino CJ . Biomaterials from blends of fluoropolymers and corn starch—Implant and structural aspects . Mater Sci Eng C 2014 ; 36 : 226 – 236 . 

  44. Van Natta F , Hill J , Carothers W . Studies of polymerization and ring formation. XXIII. e‐caprolactone and its polymers . J Am Chem Soc 1934 ; 56 : 455 – 457 . 

  45. Woodruff MA , Hutmacher DW . The return of a forgotten polymer—Polycaprolactone in the 21st century . Prog Polym Sci 2010 ; 10 : 1217 – 1256 . 

  46. Sawyer A , Song S , Susanto E , Chuan P , Lam C , Woodruff M , et al. The stimulation of healing within a rat calvarial defect by mPCL–TCP/collagen scaffolds loaded with rhBMP‐2 . Biomaterials 2009 ; 13 : 2479 – 2488 . 

  47. Schantz J‐T , Hutmacher DW , Lam CXF , Brinkmann M , Wong KM , Lim TC , et al. Repair of calvarial defects with customised tissue‐engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo . Tissue Eng 2003 ; 4 ( Suppl 1 ): 127 – 139 . 

  48. Nair LS , Laurencin CT . Biodegradable polymers as biomaterials . Prog Polym Sci 2007 ; 8 : 762 – 798 . 

  49. Chandra R , Rustgi R . Biodegradable polymers . Prog Polym Sci 1998 ; 7 : 1273 – 1335 . 

  50. Woodward SC , Brewer P , Moatamed F , Schindler A , Pitt C . The intracellular degradation of poly (ε‐caprolactone) . J Biomed Mater Res A 1985 ; 4 : 437 – 444 . 

  51. Lam CX , Savalani MM , Teoh S‐H , Hutmacher DW . Dynamics of in vitro polymer degradation of polycaprolactone‐based scaffolds: Accelerated versus simulated physiological conditions . Biomed Mater 2008 ; 3 : 034108 . 

  52. Pitt CG , Chasalow F , Hibionada Y , Klimas D , Schindler A . Aliphatic polyesters. I. The degradation of poly (∊‐caprolactone) in vivo . J Appl Polym Sci 1981 ; 11 : 3779 – 3787 . 

  53. Lam CX , Hutmacher DW , Schantz JT , Woodruff MA , Teoh SH . Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo . J Biomed Mater Res A 2009 ; 3 : 906 – 919 . 

  54. Hermanová S , Bálková R , Voběrková S , Chamradová I , Omelková J , Richtera L , et al. Biodegradation study on poly (ε‐caprolactone) with bimodal molecular weight distribution . J Appl Polym Sci 2013 ; 6 : 4726 – 4735 . 

  55. Sun H , Mei L , Song C , Cui X , Wang P . The in vivo degradation, absorption and excretion of PCL‐based implant . Biomaterials 2006 ; 9 : 1735 – 1740 . 

  56. Pena J , Corrales T , Izquierdo‐Barba I , Doadrio AL , Vallet‐Regí M . Long term degradation of poly (ɛ‐caprolactone) films in biologically related fluids . Polym Degrad Stabil 2006 ; 7 : 1424 – 1432 . 

  57. Hutmacher DW , Schantz T , Zein I , Ng KW , Teoh SH , Tan KC . Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling . J Biomed Mater Res A 2001 ; 2 : 203 – 216 . 

  58. Khil MS , Bhattarai SR , Kim HY , Kim SZ , Lee KH . Novel fabricated matrix via electrospinning for tissue engineering . J Biomed Mater Res B 2005 ; 1 : 117 – 124 . 

  59. Yao D , Smith A , Nagarajan P , Vasquez A , Dang L , Chaudhry GR . Fabrication of polycaprolactone scaffolds using a sacrificial compression‐molding process . J Biomed Mater Res B 2006 ; 2 : 287 – 295 . 

  60. Fu X , Sammons RL , Bertóti I , Jenkins MJ , Dong H . Active screen plasma surface modification of polycaprolactone to improve cell attachment . J Biomed Mater Res B 2012 ; 2 : 314 – 320 . 

  61. Thomas V , Jose MV , Chowdhury S , Sullivan JF , Dean DR , Vohra YK . Mechano‐morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning . J Biomater Sci, Polym Ed 2006 ; 9 : 969 – 984 . 

  62. Remya K , Joseph J , Mani S , John A , Varma H , Ramesh P . Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactonepolyethyleneglycolpolycaprolactone blend scaffold for bone tissue engineering applications . J Biomed Nanotechnol 2013 ; 9 : 1483 – 1494 . 

  63. Hutmacher DW . Scaffolds in tissue engineering bone and cartilage . Biomaterials 2000 ; 24 : 2529 – 2543 . 

  64. Rohner D , Hutmacher DW , Cheng TK , Oberholzer M , Hammer B . In vivo efficacy of bone‐marrow‐coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig . J Biomed Mater Res B 2003 ; 2 : 574 – 580 . 

  65. Huang Q , Goh J , Hutmacher D , Lee EH . In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β 1 and the potential for in situ chondrogenesis . Tissue Eng 2002 ; 3 : 469 – 482 . 

  66. Xue J , Feng B , Zheng R , Lu Y , Zhou G , Liu W , et al. Engineering ear‐shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone . Biomaterials 2013 ; 11 : 2624 – 2631 . 

  67. Kazimoğlu C , Bölükbaşi S , Kanatli U , Senköylü A , Altun N , Babac C , et al. A novel biodegradable PCL film for tendon reconstruction: Achilles tendon defect model in rats . The Int J Artif Organs 2003 ; 9 : 804 – 812 . 

  68. Ajili SH , Ebrahimi NG , Soleimani M . Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants . Acta Biomater 2009 ; 5 : 1519 – 1530 . 

  69. Iwasaki K , Kojima K , Kodama S , Paz AC , Chambers M , Umezu M , et al. Bioengineered three‐layered robust and elastic artery using hemodynamically‐equivalent pulsatile bioreactor . Circulation 2008 ; 14 ( Suppl 1 ): S52 – S57 . 

  70. Liu L , Guo S , Chang J , Ning C , Dong C , Yan D . Surface modification of polycaprolactone membrane via layer‐by‐layer deposition for promoting blood compatibility . J Biomed Mater Res B 2008 ; 1 : 244 – 250 . 

  71. Reed CR , Han L , Andrady A , Caballero M , Jack MC , Collins JB , et al. Composite tissue engineering on polycaprolactone nanofiber scaffolds . Ann Plast Surg 2009 ; 5 : 505 – 512 . 

  72. Powell HM , Boyce ST . Engineered human skin fabricated using electrospun collagen–PCL blends: Morphogenesis and mechanical properties . Tissue Eng A 2009 ; 8 : 2177 – 2187 . 

  73. Schnell E , Klinkhammer K , Balzer S , Brook G , Klee D , Dalton P , et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly‐ε‐caprolactone and a collagen/poly‐ε‐caprolactone blend . Biomaterials 2007 ; 19 : 3012 – 3025 . 

  74. Sinha V , Bansal K , Kaushik R , Kumria R , Trehan A . Poly‐∊‐caprolactone microspheres and nanospheres: An overview . Int J Pharm 2004 ; 1 : 1 – 23 . 

  75. Liu M , Chen L , Zhao Y , Gan L , Zhu D , Xiong W , et al. Preparation, characterization and properties of liposome‐loaded polycaprolactone microspheres as a drug delivery system . Colloid Surface A 2012 ; 395 : 131 – 136 . 

  76. Grignard B , Stassin F , Calberg C , Jérôme R , Jérôme C . Synthesis of biodegradable poly‐ε‐caprolactone microspheres by dispersion ring‐opening polymerization in supercritical carbon dioxide . Biomacromolecules 2008 ; 11 : 3141 – 3149 . 

  77. Saez A , Guzman M , Molpeceres J , Aberturas M . Freeze‐drying of polycaprolactone and poly (D, L‐lactic‐glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs . Eur J Pharm Biopharm 2000 ; 3 : 379 – 387 . 

  78. Zhou N , Zan X , Wang Z , Wu H , Yin D , Liao C , et al. Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte‐targeted delivery of curcumin . Carbohydr Polym 2013 ; 1 : 420 – 429 . 

  79. Shenoy DB , Amiji MM . Poly (ethylene oxide)‐modified poly (ɛ‐caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer . Int J Pharm 2005 ; 1 : 261 – 270 . 

  80. Gibson JW , Tipton AJ , Holl RI , Meador S . Zero‐Order Prolonged Release Coaxial Implants . US2012 Sep. 11, 2012 . 

  81. Song SS , Kim HH , Yi YW , inventors. Biodegradable Hydrogel Copolymer as Drug Delivery Matrix . Korea1996 May 7, 1996 . 

  82. Eisenberg A , Maysinger D , Allen C . Diblock Copolymer and Use Thereof in a Micellar Drug Delivery System . Canada 2002 Oct 22, 2002 . 

  83. Middleton JC , Tipton AJ . Synthetic biodegradable polymers as orthopedic devices . Biomaterials 2000 ; 23 : 2335 – 2346 . 

  84. Ng KW , Achuth HN , Moochhala S , Lim TC , Hutmacher DW . In vivo evaluation of an ultra‐thin polycaprolactone film as a wound dressing . J Biomater Sci Polym Ed 2007 ; 7 : 925 – 938 . 

  85. Dhanaraju MD , Gopinath D , Ahmed MR , Jayakumar R , Vamsadhara C . Characterization of polymeric poly (epsilon‐caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids . J Biomed Mater Res A 2006 ; 1 : 63 – 72 . 

  86. Jones I . Physical and biocompatibility properties of poly‐delta‐caprolactone produced using in situ polymerisation: A novel manufacturing technique for long‐fiber composite materials . Biomaterials(UK) 2000 ; 7 : 713 – 724 . 

  87. Miner MR , Berzins DW , Bahcall JK . A comparison of thermal properties between gutta‐percha and a synthetic polymer based root canal filling material (Resilon) . J Endodont 2006 ; 7 : 683 – 686 . 

  88. Kim J‐J , Bae W‐J , Kim J‐M , Kim J‐J , Lee E‐J , Kim H‐W , et al. Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells . J Biomater Appl 2014 ; 28 : 1069 – 1078 . 

  89. Rosa D , Guedes C , Pedroso A , Calil M . The influence of starch gelatinization on the rheological, thermal, and morphological properties of poly (ɛ‐caprolactone) with corn starch blends . Mater Sci Eng C 2004 ; 5 : 663 – 570 . 

  90. Wu K‐J , Wu C‐S , Chang J‐S . Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate‐solubilizing bacterium Bacillus sp. PG01 . Process Biochem 2007 ; 4 : 669 – 675 . 

  91. Su J , Chen L , Li L . Characterization of polycaprolactone and starch blends for potential application within the biomaterials field . Afr J Biotechnol 2012 ; 3 : 694 – 701 . 

  92. AliAkbari Ghavimi S , Ebrahimzadeh Mh , Tahmasebi Rad A , Solati‐Hashjin M . Enhancment of bone regeneration through in situ porosity formation in polycaprolactone/starch composite scaffolds Artif Organs 2013 ; 7 : A27 – A50 . 

  93. AliAkbari Ghavimi S , Solati‐Hashjin M , Ebrahimzadeh MH , editors. In situ pore formation capability of polycaprolactone/starch composite for bone tissue engineering applications . In: 10th International Seminar on Polymer Science and Technology ; October 21–25, 2012; Tehran . 

  94. AliAkbari Ghavimi S , Fayyaz Bakhsh F , Solati Hashjin M , Ebrahimzadeh MH , Shokrgozar MA , editors. Preparation, characterization and biological assesment of polycaprolactone/starch scaffolds with in situ pore formation capability for bone tissue engineering application . In: International Bone Tissue Engineering Congress (Bone Tech). Germany: Hannover ; October 12 – 15 , 2011 . 

  95. Arvanitoyannis I , Psomiadou E , Biliaderis CG , Ogawa H , Kawasaki N , Nakayama A . Biodegradable films made from low density polyethylene (LDPE), ethylene acrylic acid (EAA), polycaprolactone (PCL) and wheat starch for food packaging applications: Part 3 . Starch Starke 1997 ; 7 : 306 – 322 . 

  96. Bastioli C , editor. Biodegradable Materials—Present Situation and Future Perspectives . Macromolecular Symposia . 1998 . Wiley Online Library . 

  97. Cho H , Moon H , Kim M , Nam K , Kim J . Biodegradability and biodegradation rate of poly (caprolactone)‐starch blend and poly (butylene succinate) biodegradable polymer under aerobic and anaerobic environment . Waste Manage 2011 ; 3 : 475 – 480 . 

  98. Kalambur S , Rizvi SS . An overview of starch‐based plastic blends from reactive extrusion . J Plast Film Sheet 2006 ; 1 : 39 – 58 . 

  99. Shen Z , Wang J . Biological denitrification using cross‐linked starch/PCL blends as solid carbon source and biofilm carrier . Bioresour Technol 2011 ; 19 : 8835 – 8838 . 

  100. Shen Z , Hu J , Wang J , Zhou Y . Biological denitrification using starch/polycaprolactone blends as carbon source and biofilm support . Desalin Water Treat 2014 ; 52 : 1 – 7 . 

  101. Odusanya O , Manan D , Ishiaku U , Azemi B . Effect of starch predrying on the mechanical properties of starch/poly (ε‐caprolactone) composites . J Appl Polym Sci 2003 ; 6 : 877 – 884 . 

  102. Pranamuda H , Tokiwa Y , Tanaka H . Physical properties and biodegradability of blends containing poly (ε‐caprolactone) and tropical starches . J Environ Polym Degr 1996 ; 1 : 1 – 7 . 

  103. Aliakbari Ghavimi S , Solati Hashjin M , Ebrahimzadeh MH . An introduction to tissue engineering . Iran J Orthoped Surg 2011 ; 4 : 185 – 190 . 

  104. Wu C‐S . Physical properties and biodegradability of maleated‐polycaprolactone/starch composite . Polym Degrad Stabil 2003 ; 1 : 127 – 134 . 

  105. Dubois P , Krishnan M , Narayan R . Aliphatic polyester‐grafted starch‐like polysaccharides by ring‐opening polymerization . Polymer 1999 ; 11 : 3091 – 100 . 

  106. Santos MI , Unger RE , Sousa RA , Reis RL , Kirkpatrick CJ . Crosstalk between osteoblasts and endothelial cells co‐cultured on a polycaprolactone–starch scaffold and the in vitro development of vascularization . Biomaterials 2009 ; 26 : 4407 – 4415 . 

  107. Gomes ME , Holtorf HL , Reis RL , Mikos AG . Influence of the porosity of starch‐based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor . Tissue Eng 2006 ; 4 : 801 – 809 . 

  108. Vertuccio L , Gorrasi G , Sorrentino A , Vittoria V . Nano clay reinforced PCL/starch blends obtained by high energy ball milling . Carbohydr Polym 2009 ; 1 : 172 – 179 . 

  109. Alix S , Mahieu A , Terrie C , Soulestin J , Gerault E , Feuilloley MGJ , Gattin R , Edon V , Ait‐Younes T , Leblanc N . Active pseudo‐multilayered films from polycaprolactone and starch based matrix for food‐packaging applications . Eur Polym J 2013 ; 49 : 1234 – 1242 . 

  110. Silva NA , Salgado AJ , Sousa RA , Oliveira JT , Pedro AJ , Leite‐Almeida H , et al. Development and characterization of a novel hybrid tissue engineering–based scaffold for spinal cord injury repair . Tissue Eng A 2009 ; 1 : 45 – 54 . 

  111. Salgado A , Sousa R , Fraga J , Pêgo JM , Silva B , Malva J , et al. Effects of starch/polycaprolactone‐based blends for spinal cord injury regeneration in neurons/glial cells viability and proliferation . J Bioact Compat Pol 2009 ; 3 : 235 – 248 . 

  112. Martins A , Chung S , Pedro AJ , Sousa RA , Marques AP , Reis RL , et al. Hierarchical starch‐based fibrous scaffold for bone tissue engineering applications . J Tissue Eng Regen Med 2009 ; 1 : 37 – 42 . 

  113. Duarte ARC , Mano JF , Reis RL . Enzymatic degradation of three‐dimensional scaffolds of starch‐poly‐(ɛ‐caprolactone) prepared by supercritical fluid technology . Polym Degrad Stabil 2010 ; 10 : 2110 – 2117 . 

  114. Tuzlakoglu K , Bolgen N , Salgado A , Gomes ME , Piskin E , Reis R . Nano‐and micro‐fiber combined scaffolds: A new architecture for bone tissue engineering . J Mater Sci Mater Med 2005 ; 12 : 1099 – 1104 . 

  115. Vikman M , Hulleman S , Van der Zee M , Myllärinen P , Feil H . Morphology and enzymatic degradation of thermoplastic starch–polycaprolactone blends . J Appl Polym Sci 1999 ; 11 : 2594 – 2604 . 

  116. Shin BY , Lee SI , Shin YS , Balakrishnan S , Narayan R . Rheological, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone . Polym Eng Sci 2004 ; 8 : 1429 – 1438 . 

  117. Myllymaki O , Myllarinen P , Forssell P , Suortti T , Lahteenkorva K , Ahvenainen R , et al. Mechanical and permeability properties of biodegradable extruded starchpolycaprolactone films . Packag Technol Sci 1998 ; 6 : 265 – 274 . 

  118. Liao J , Luo Z , Zhang Y , Zhang X , Cheng J , Wu Q . Effects of a novel compatible interface structure on the properties of starch–PCL composites . New J Chem 2014 ; 6 : 2522 – 2529 . 

  119. Avella M , Errico M , Laurienzo P , Martuscelli E , Raimo M , Rimedio R . Preparation and characterisation of compatibilised polycaprolactone/starch composites . Polymer 2000 ; 10 : 3875 – 3881 . 

  120. Kalambur S , Rizvi SS . Rheological behavior of starch–polycaprolactone (PCL) nanocomposite melts synthesized by reactive extrusion . Polym Eng Sci 2006 ; 5 : 650 – 658 . 

  121. Yavuz H , Babaç C . Preparation and biodegradation of starch/polycaprolactone films . J Polym Environ 2003 ; 3 : 107 – 113 . 

  122. Šárka E , Kruliš Z , Kotek J , Růžek L , Korbarova A , Bubnik Z , et al. Application of wheat B‐starch in biodegradable plastic materials . Czech J Food Sci 2011 ; 3 : 232 – 242 . 

  123. Kweon DK , Lim ST . Substitution of corn starch with polycaprolactone via chlorination and water resistance of the substituted starch . J Appl Polym Sci 2001 ; 9 : 2197 – 2202 . 

  124. Kweon DK , Kawasaki N , Nakayama A , Aiba S . Preparation and characterization of starch/polycaprolactone blend . J Appl Polym Sci 2004 ; 3 : 1716 – 1723 . 

  125. Singh R , Pandey J , Rutot D , Degée P , Dubois P . Biodegradation of poly (ε‐caprolactone)/starch blends and composites in composting and culture environments: The effect of compatibilization on the inherent biodegradability of the host polymer . Carbohydr Res 2003 ; 17 : 1759 – 1769 . 

  126. Choi EJ , Kim CH , Park JK . Structure–property relationship in PCL/starch blend compatibilized with starch‐g‐PCL copolymer . J Polym Sci Pol Phys 1999 ; 17 : 2430 – 8246 . 

  127. Chang PR , Zhou Z , Xu P , Chen Y , Zhou S , Huang J . Thermoforming starch‐graft‐polycaprolactone biocomposites via one‐pot microwave assisted ring opening polymerization . J Appl Polym Sci 2009 ; 5 : 2973 – 2979 . 

  128. Habibi Y , Dufresne A . Highly filled bionanocomposites from functionalized polysaccharide nanocrystals . Biomacromolecules 2008 ; 7 : 1974 – 1980 . 

  129. Choi E‐J , Kim C‐H , Park J‐K . Synthesis and characterization of starch‐g‐polycaprolactone copolymer . Macromolecules 1999 ; 22 : 7402 – 7408 . 

  130. Kweon DK , Cha DS , Park HJ , Lim ST . Starch‐g‐polycaprolactone copolymerization using diisocyanate intermediates and thermal characteristics of the copolymers . J Appl Polym Sci 2000 ; 5 : 986 – 993 . 

  131. Wu CS . Performance of an acrylic acid grafted polycaprolactone/starch composite: Characterization and mechanical properties . J Appl Polym Sci 2003 ; 11 : 2888 – 2895 . 

  132. Rosa D , Lopes D , Calil M . The influence of the structure of starch on the mechanical, morphological and thermal properties of poly (ε‐caprolactone) in starch blends . J Mater Sci 2007 ; 7 : 2323 – 2328 . 

  133. Mariani P , Allganer K , Oliveira F , Cardoso E , Innocentini‐Mei L . Effect of soy protein isolate on the thermal, mechanical and morphological properties of poly (ɛ‐caprolactone) and corn starch blends . Polym Test 2009 ; 8 : 824 – 829 . 

  134. Massardier‐Nageotte V , Pestre C , Cruard‐Pradet T , Bayard R . Aerobic and anaerobic biodegradability of polymer films and physico‐chemical characterization . Polym Degrad Stabil 2006 ; 3 : 620 – 627 . 

  135. Spěváček J , Brus J , Divers T , Grohens Y . Solid‐state NMR study of biodegradable starch/polycaprolactone blends . Eur Polym J 2007 ; 5 : 1866 – 1875 . 

  136. Ruseckaite R , Stefani P , Cyras V , Kenny J , Vazquez A . Temperature and crystallinity profiles generated in a polycaprolactone/starch blend under different cooling conditions . J Appl Polym Sci 2001 ; 13 : 3275 – 3283 . 

  137. Cai J , Xiong Z , Zhou M , Tan J , Zeng F , Lin S , et al. Thermal properties and crystallization behavior of thermoplastic starch/poly (ɛ‐caprolactone) composites . Carbohydr Polym 2014 ; 102 : 746 – 754 . 

  138. Aliakbari Ghavimi S , Solati‐Hashjin M , Ebrahimzadeh MH , Shokrgozar MA , Fayyaz Bakhsh F . Preparation, characterization and biological assessment of polycaprolactone/starch composites for bone tissue engineering applications . Modares J Med Sci Pathobiol 2012 ; 3 : 37 – 48 . 

  139. Bastioli C , Cerutti A , Guanella I , Romano G , Tosin M . Physical state and biodegradation behavior of starch‐polycaprolactone systems . J Environ Polym Degrad 1995 ; 2 : 81 – 95 . 

  140. Averous L , Fringant C . Association between plasticized starch and polyesters: Processing and performances of injected biodegradable systems . Polym Eng Sci 2001 ; 5 : 727 – 734 . 

  141. Lim SW , Jung IK , Lee KH , Jin BS . Structure and properties of biodegradable gluten/aliphatic polyester blends . Eur Polym J 1999 ; 10 : 1875 – 1881 . 

  142. Rosa DdS , Rodrigues TC , Graças Fassina Guedes Cd , Calil MR . Effect of thermal aging on the biodegradation of PCL, PHB‐V, and their blends with starch in soil compost . J Appl Polym Sci 2003 ; 13 : 3539 – 3546 . 

  143. Campos A , Marconcini JM , Imam S , Klamczynski A , Ortis W , Wood D , et al. Morphological, mechanical properties and biodegradability of biocomposite thermoplastic starch and polycaprolactone reinforced with sisal fibers . J Reinf Plast Comp 2012 ; 8 : 573 – 581 . 

  144. Koenig M , Huang S . Biodegradable blends and composites of polycaprolactone and starch derivatives . Polymer 1995 ; 9 : 1877 – 1882 . 

  145. Gomes ME , Azevedo HS , Moreira A , Ellä V , Kellomäki M , Reis R . Starch–poly (ε‐caprolactone) and starch–poly (lactic acid) fiber‐mesh scaffolds for bone tissue engineering applications: Structure, mechanical properties and degradation behaviour . J Tissue Eng Regen Med 2008 ; 5 : 243 – 252 . 

  146. Mano J , Koniarova D , Reis R . Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability . J Mater Sci Mater Med 2003 ; 2 : 127 – 135 . 

  147. Pashkuleva I , Azevedo HS , Reis RL . Surface structural investigation of starch‐based biomaterials . Macromol Biosci 2008 ; 2 : 210 – 219 . 

  148. Ali SFA . Biodegradation properties of poly‐ε‐caprolactone, starch and cellulose acetate butyrate composites . J Polym Environ 2014 ; 3 : 359 – 364 . 

  149. Di Franco C , Cyras V , Busalmen J , Ruseckaite R , Vazquez A . Degradation of polycaprolactone/starch blends and composites with sisal fiber . Polym Degrad Stabil 2004 ; 1 : 95 – 103 . 

  150. Azevedo HS , Gama FM , Reis RL . In vitro assessment of the enzymatic degradation of several starch based biomaterials . Biomacromolecules 2003 ; 6 : 1703 – 1712 . 

  151. Janeček Š , Svensson B , MacGregor EA . α‐Amylase: An enzyme specificity found in various families of glycoside hydrolases . Cell Mol Life Sci 2014 ; 71 : 1149 – 1170 . 

  152. Gan Z , Liang Q , Zhang J , Jing X . Enzymatic degradation of poly (ε‐caprolactone) film in phosphate buffer solution containing lipases . Polym Degrad Stabil 1997 ; 2 : 209 – 213 . 

  153. Azevedo HS , Reis RL . Encapsulation of α‐amylase into starch‐based biomaterials: An enzymatic approach to tailor their degradation rate . Acta Biomater 2009 ; 8 : 3021 – 3030 . 

  154. Gaspar M , Benkő Z , Dogossy G , Reczey K , Czigany T . Reducing water absorption in compostable starch‐based plastics . Polym Degrad Stabil 2005 ; 3 : 563 – 569 . 

  155. Abbasi Z , Rezaee Nezhad E , Moradi V , Moradi F , Ahmadi O , Homafar A . Enzymatic degradation of poly (ε‐Caprolactone) and starch blends bontaining SiO 2 nanoparticle by amyloglucosidase and α‐amylase . Int J Nano Dimension 2014 ; 5 : 549 – 555 . 

  156. Taghizadeh A , Favis BD . Carbon nanotubes in blends of polycaprolactone/thermoplastic starch . Carbohydr Polym 2013 ; 98 : 189 – 198 . 

  157. Pérez E , Pérez C , Alvarez V , Bernal C . Fracture behavior of a commercial starch/polycaprolactone blend reinforced with different layered silicates . Carbohydr Polym 2013 ; 97 : 269 – 276 . 

  158. Campos A , Marconcini J , Martins‐Franchetti S , Mattoso L . The influence of UV‐C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers . Polym Degrad Stabil 2012 ; 10 : 1948 – 1955 . 

  159. Carmona VB , de Campos A , Marconcini JM , Mattoso LHC . Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by nonisothermal procedures . J Therm Anal Calorim 2014 ; 1 : 153 – 160 . 

  160. Perez C , Alvarez V , Vazquez A . Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites . Mater Sci Eng A 2008 ; 1 : 259 – 265 . 

  161. Matzinos P , Tserki V , Gianikouris C , Pavlidou E , Panayiotou C . Processing and characterization of LDPE/starch/PCL blends . Eur Polym J 2002 ; 9 : 1713 – 1720 . 

  162. Fei P , Shi Y , Zhou M , Cai J , Tang S , Xiong H . Effects of nano‐TiO 2 on the properties and structures of starch/poly (ε‐caprolactone) composites . J Appl Polym Sci 2013 ; 6 : 4129 – 4136 . 

  163. Jukola H , Nikkola L , Gomes ME , Chiellini F , Tukiainen M , Kellomäki M , et al. Development of a bioactive glass fiber reinforced starch–polycaprolactone composite . J Biomed Mater Res B 2008 ; 1 : 197 – 203 . 

  164. Cyras V , Martucci J , Iannace S , Vazquez A . Influence of the fiber content and the processing conditions on the flexural creep behavior of sisal‐PCL‐starch composites . J Thermoplast Compos 2002 ; 3 : 253 – 265 . 

  165. Cyras VP , Vázquez A , Kenny JM . Crystallization kinetics by differential scanning calorimetry for PCL/starch and their reinforced sisal fiber composites . Polym Eng Sci 2001 ; 9 : 1521 – 1528 . 

  166. Kim EG , Kim BS , Kim DS . Physical properties and morphology of polycaprolactone/starch/pine‐leaf composites . J Appl Polym Sci 2007 ; 2 : 928 – 934 . 

  167. Marques A , Reis R , Hunt J . The effect of starch‐based biomaterials on leukocyte adhesion and activation in vitro . J Mater Sci Mater Med 2005 ; 11 : 1029 – 1043 . 

  168. Marques AP , Reis RL , Hunt JA . An In vivo study of the host response to starch‐based polymers and composites subcutaneously implanted in rats . Macromol Biosci 2005 ; 8 : 775 – 785 . 

  169. Santos T , Marques A , Höring B , Martins A , Tuzlakoglu K , Castro AG , et al. In vivo short‐term and long‐term host reaction to starch‐based scaffolds . Acta Biomater 2010 ; 11 : 4314 – 4326 . 

  170. Costa S , Reis R . Immobilisation of catalase on the surface of biodegradable starch‐based polymers as a way to change its surface characteristics . J Mater Sci Mater Med 2004 ; 4 : 335 – 342 . 

  171. Alves CM , Yang Y , Carnes D , Ong J , Sylvia V , Dean D , et al. Modulating bone cells response onto starch‐based biomaterials by surface plasma treatment and protein adsorption . Biomaterials 2007 ; 2 : 307 – 315 . 

  172. Rodrigues MT , Gomes ME , Viegas CA , Azevedo JT , Dias IR , Guzón FM , et al. Tissue‐engineered constructs based on SPCL scaffolds cultured with goat marrow cells: Functionality in femoral defects . J Tissue Eng Regen Med 2011 ; 1 : 41 – 49 . 

  173. Rodrigues A , Gomes ME , Leonor I , Reis R . Bioactive starch‐based scaffolds and human adipose stem cells are a good combination for bone tissue engineering . Acta Biomater 2012 ; 10 : 3765 – 3776 . 

  174. Marques A , Cruz H , Coutinho O , Reis R . Effect of starch‐based biomaterials on the in vitro proliferation and viability of osteoblast‐like cells . J Mater Sci Mater Med 2005 ; 9 : 833 – 842 . 

  175. AliAkbari Ghavimi S , Solati‐Hashjin M , Ebrahimzadeh MH , Fayyaz Bakhsh F . Polycaprolactone/starch composite with in situ pore formation capability for bone tissue engineering application . J Tissue Eng Regen Med 2012 ;( Suppl 1 ): 12 . 

  176. Lima M , Pirraco R , Sousa R , Neves N , Marques A , Bhattacharya M , et al. Bottom‐up approach to construct microfabricated multi‐layer scaffolds for bone tissue engineering . Biomed Microdev 2014 ; 1 : 69 – 78 . 

  177. Wang Y , Rodriguez‐Perez MA , Reis RL , Mano JF . Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications . Macromol Mater Eng 2005 ; 8 : 792 – 801 . 

  178. Pavlov MP , Mano JF , Neves NM , Reis RL . Fibers and three‐dimensional Mesh scaffolds from biodegradable starch‐based blends: Production and characterization . Macromol Biosci 2004 ; 8 : 776 – 784 . 

  179. Gomes ME , Sikavitsas VI , Behravesh E , Reis RL , Mikos AG . Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch‐based three‐dimensional scaffolds . J Biomed Mater Res A 2003 ; 1 : 87 – 95 . 

  180. Gomes ME , Bossano CM , Johnston CM , Reis RL , Mikos AG . In vitro localization of bone growth factors in constructs of biodegradable scaffolds seeded with marrow stromal cells and cultured in a flow perfusion bioreactor . Tissue Eng 2006 ; 1 : 177 – 188 . 

  181. Mendes S , Bezemer J , Claase M , Grijpma D , Bellia G , Degli‐Innocenti F , et al. Evaluation of two biodegradable polymeric systems as substrates for bone tissue engineering . Tissue Eng 2003 ; 4 ( Suppl 1 ): 91 – 101 . 

  182. Tuzlakoglu K , Pashkuleva I , Rodrigues MT , Gomes ME , van Lenthe GH , Müller R , et al. A new route to produce starch‐based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation . J Biomed Mater Res A 2010 ; 1 : 369 – 377 . 

  183. Martins AM , Saraf A , Sousa RA , Alves CM , Mikos AG , Kasper FK , et al. Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly (ε‐caprolactone) fiber meshes . J Biomed Mater Res A 2010 ; 4 : 1061 – 1069 . 

  184. Rodrigues MT , Lee B‐K , Lee SJ , Gomes ME , Reis RL , Atala A , et al. The effect of differentiation stage of amniotic fluid stem cells on bone regeneration . Biomaterials 2012 ; 26 : 6069 – 6078 . 

  185. Rodrigues AI , Gomes ME , Leonor IB , Reis RL , editors. In vitro evaluation of osteoconductive starch based scaffolds under dynamic conditions . In: Bioengineering (ENBENG). IEEE 1st Portuguese Meeting , 1–4 March 2011 , Lisbon. 

  186. Carvalho PP , Leonor IB , Smith BJ , Dias IR , Reis RL , Gimble JM , et al. Undifferentiated human adipose‐derived stromal/stem cells loaded onto wet‐spun starch–polycaprolactone scaffolds enhance bone regeneration: Nude mice calvarial defect in vivo study . J Biomed Mater Res A 2014 ; 102 : 3102 – 3111 . 

  187. Link DP , Gardel LS , Correlo VM , Gomes ME , Reis RL . Osteogenic properties of starch poly (ε‐caprolactone) (SPCL) fiber meshes loaded with osteoblast‐like cells in a rat critical‐sized cranial defect . J Biomed Mater Res A 2013 ; 11 : 3059 – 3065 . 

  188. Requicha JF , Moura T , Leonor IB , Martins T , Muñoz F , Reis RL , et al. Evaluation of a starch‐based double layer scaffold for bone regeneration in a rat model . J Orthop Res 2014 ; 7 : 904 – 909 . 

  189. Silva NA , Sousa RA , Pires AO , Sousa N , Salgado AJ , Reis RL . Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair . J Biomed Mater Res A 2012 ; 2 : 470 – 476 . 

  190. Oliveira JT , Crawford A , Mundy J , Moreira A , Gomes ME , Hatton PV , et al. A cartilage tissue engineering approach combining starch‐polycaprolactone fiber mesh scaffolds with bovine articular chondrocytes . J Mater Sci Mater Med 2007 ; 2 : 295 – 302 . 

  191. da Silva MA , Crawford A , Mundy J , Martins A , Araújo JV , Hatton PV , et al. Evaluation of extracellular matrix formation in polycaprolactone and starch‐compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes . Tissue Eng A 2008 ; 2 : 377 – 385 . 

  192. Ghanaati S , Fuchs S , Webber MJ , Orth C , Barbeck M , Gomes ME , et al. Rapid vascularization of starch–poly (caprolactone) in vivo by outgrowth endothelial cells in co‐culture with primary osteoblasts . J Tissue Eng Regen Med 2011 ; 6 : e136 – e143 . 

  193. Santos MI , Fuchs S , Gomes ME , Unger RE , Reis RL , Kirkpatrick CJ . Response of micro‐and macrovascular endothelial cells to starch‐based fiber meshes for bone tissue engineering . Biomaterials 2007 ; 2 : 240 – 248 . 

  194. Santos MI , Tuzlakoglu K , Fuchs S , Gomes ME , Peters K , Unger RE , et al. Endothelial cell colonization and angiogenic potential of combined nano‐and micro‐fibrous scaffolds for bone tissue engineering . Biomaterials 2008 ; 32 : 4306 – 4313 . 

  195. Fuchs S , Ghanaati S , Orth C , Barbeck M , Kolbe M , Hofmann A , et al. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds . Biomaterials 2009 ; 4 : 526 – 534 . 

  196. Dash TK , Konkimalla VB . Poly‐є‐caprolactone based formulations for drug delivery and tissue engineering: A review . J Controlled Release 2012 ; 1 : 15 – 33 . 

  197. Yang C‐H , Huang K‐S , Lin Y‐S , Lu K , Tzeng C‐C , Wang E‐C , et al. Microfluidic assisted synthesis of multi‐functional polycaprolactone microcapsules: Incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs . Lab Chip 2009 ; 7 : 961 – 965 . 

  198. Giavaresi G , Tschon M , Borsari V , Daly J , Liggat J , Fini M , et al. New polymers for drug delivery systems in orthopaedics: in vivo biocompatibility evaluation . Biomed Pharmacother 2004 ; 8 : 411 – 417 . 

  199. Tabassi SAS , Tekie FSM , Hadizadeh F , Rashid R , Khodaverdi E , Mohajeri SA . Sustained release drug delivery using supramolecular hydrogels of the triblock copolymer PCL–PEG–PCL and α‐cyclodextrin . J Sol Gel Sci Technol 2014 ; 1 : 166 – 171 . 

  200. Beneke CE , Viljoen AM , Hamman JH . Polymeric plant‐derived excipients in drug delivery . Molecules 2009 ; 7 : 2602 – 2620 . 

  201. Wu C , Wang Z , Zhi Z , Jiang T , Zhang J , Wang S . Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs . Int J Pharm 2011 ; 1 : 162 – 169 . 

  202. Rodrigues A , Emeje M . Recent applications of starch derivatives in nanodrug delivery . Carbohydr Polym 2012 ; 2 : 987 – 994 . 

  203. Sinha V , Kumria R . Polysaccharides in colon‐specific drug delivery . Int J Pharm 2001 ; 1 : 19 – 38 . 

  204. Mauricio MR , da Costa PG , Haraguchi SK , Guilherme MR , Muniz EC , Rubira AF . Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery . Carbohydr Polym 2015 ; 115 : 715 – 722 . 

  205. Bagliotti Meneguin A , Stringhetti Ferreira Cury B , Evangelista RC . Films from resistant starch‐pectin dispersions intended for colonic drug delivery . Carbohydr Polym 2014 ; 99 : 140 – 149 . 

  206. Balmayor ER , Tuzlakoglu K , Azevedo HS , Reis R . Preparation and characterization of starch‐poly‐ε‐caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications . Acta Biomater 2009 ; 4 : 1035 – 1045 . 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로