$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Transmembrane protein structures without X-rays

Trends in biochemical sciences, v.31 no.2, 2006년, pp.106 - 113  

Abstract AI-Helper 아이콘AI-Helper

Transmembrane (TM) proteins constitute 15–30% of the genome, but 50% of the membrane protein families in eukaryotes lack bacterial homologs. Therefore, it is conceivable that many more years will elapse before high-resolution structures of eukaryotic TM proteins emerge. Until then, integrated ...

참고문헌 (69)

  1. Protein Sci. Liu 10 1970 2001 10.1110/ps.10101 Comparing function and structure between entire proteomes 

  2. Protein Sci. Rost 5 1704 1996 10.1002/pro.5560050824 Topology prediction for helical transmembrane proteins at 86% accuracy 

  3. Biophys. Chem. Mitaku 82 165 1999 10.1016/S0301-4622(99)00116-7 Proportion of membrane proteins in proteomes of 15 single-cell organisms analyzed by the SOSUI prediction system 

  4. J. Mol. Biol. Krogh 305 567 2001 10.1006/jmbi.2000.4315 Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes 

  5. Protein Sci. White 13 1948 2004 10.1110/ps.04712004 The progress of membrane protein structure determination 

  6. Chem. Rev. Opella 104 3587 2004 10.1021/cr0304121 Structure determination of membrane proteins by NMR spectroscopy 

  7. Nature Murata 407 599 2000 10.1038/35036519 Structural determinants of water permeation through aquaporin-1 

  8. Science MacKenzie 276 131 1997 10.1126/science.276.5309.131 A transmembrane helix dimer: structure and implications 

  9. Science Chang 282 2220 1998 10.1126/science.282.5397.2220 Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel 

  10. 10.1093/nar/gkh121 Bateman, A. et al. (2004) The Pfam protein families database. Nucleic Acids Res. 32 (Database issue), D138-D141 

  11. Chem. Rev. Fanelli 105 3297 2005 10.1021/cr000095n Computational modeling approaches to structure-function analysis of G protein-coupled receptors 

  12. FEBS Lett. Oliveira 564 269 2004 10.1016/S0014-5793(04)00320-5 Heavier-than-air flying machines are impossible 

  13. FEBS Lett. Engelman 555 122 2003 10.1016/S0014-5793(03)01106-2 Membrane protein folding: beyond the two stage model 

  14. J. Mol. Biol. Henderson 213 899 1990 10.1016/S0022-2836(05)80271-2 Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy 

  15. EMBO J. Baldwin 12 1693 1993 10.1002/j.1460-2075.1993.tb05814.x The probable arrangement of the helices in G protein-coupled receptors 

  16. Nature Kuhlbrandt 350 130 1991 10.1038/350130a0 Three-dimensional structure of plant light-harvesting complex determined by electron crystallography 

  17. J. Mol. Biol. Deisenhofer 246 429 1995 10.1006/jmbi.1994.0097 Crystallographic refinement at 2.3A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis 

  18. J. Mol. Biol. Bowie 272 780 1997 10.1006/jmbi.1997.1279 Helix packing in membrane proteins 

  19. Science Doyle 280 69 1998 10.1126/science.280.5360.69 The structure of the potassium channel: molecular basis of K+ conduction and selectivity 

  20. Nature Dutzler 415 287 2002 10.1038/415287a X-ray structure of a ClC chloride channel at 3.0A reveals the molecular basis of anion selectivity 

  21. Science Abramson 301 610 2003 10.1126/science.1088196 Structure and mechanism of the lactose permease of Escherichia coli 

  22. Protein Sci. Chen 11 2774 2002 10.1110/ps.0214502 Transmembrane helix predictions revisited 

  23. J. Mol. Biol. Unwin 94 425 1975 10.1016/0022-2836(75)90212-0 Molecular structure determination by electron microscopy of unstained crystalline specimens 

  24. Nature Rhee 396 283 1998 10.1038/24421 Three-dimensional structure of the plant photosystem II reaction centre at 8A resolution 

  25. Science Unger 283 1176 1999 10.1126/science.283.5405.1176 Three-dimensional structure of a recombinant gap junction membrane channel 

  26. Nature Breyton 418 662 2002 10.1038/nature00827 Three-dimensional structure of the bacterial protein-translocation complex SecYEG 

  27. EMBO J. Ubarretxena-Belandia 22 6175 2003 10.1093/emboj/cdg611 Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer 

  28. Adv. Biophys. Fujiyoshi 35 25 1998 10.1016/S0065-227X(98)80003-8 The structural study of membrane proteins by electron crystallography 

  29. Proc. Natl. Acad. Sci. U. S. A. Ma 101 2852 2004 10.1073/pnas.0400137101 Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli 

  30. Nature Jiang 423 33 2003 10.1038/nature01580 X-ray structure of a voltage-dependent K+ channel 

  31. Science Long 309 897 2005 10.1126/science.1116269 Crystal structure of a mammalian voltage-dependent Shaker family K+ channel 

  32. J. Struct. Biol. Hasler 121 162 1998 10.1006/jsbi.1998.3960 2D crystallization of membrane proteins: rationales and examples 

  33. Ultramicroscopy Henderson 19 147 1986 10.1016/0304-3991(86)90203-2 Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5A resolution 

  34. Prog. Biophys. Mol. Biol. Amos 39 183 1982 10.1016/0079-6107(83)90017-2 Three-dimensional structure determination by electron microscopy of two-dimensional crystals 

  35. Nature Walz 387 624 1997 10.1038/42512 The three-dimensional structure of aquaporin-1 

  36. J. Struct. Biol. Mitsuoka 128 34 1999 10.1006/jsbi.1999.4177 The structure of aquaporin-1 at 4.5-A resolution reveals short α-helices in the center of the monomer 

  37. J. Mol. Biol. Heymann 295 1039 2000 10.1006/jmbi.1999.3413 Structural clues in the sequences of the aquaporins 

  38. J. Mol. Biol. de Groot 300 987 2000 10.1006/jmbi.2000.3913 The fold of human aquaporin 1 

  39. Biophys. J. Fleishman 87 3448 2004 10.1529/biophysj.104.046417 An automatic method for predicting the structures of transmembrane proteins using cryo-EM and evolutionary data 

  40. J. Mol. Biol. Baldwin 272 144 1997 10.1006/jmbi.1997.1240 An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors 

  41. Nature Unger 389 203 1997 10.1038/38316 Arrangement of rhodopsin transmembrane α-helices 

  42. J. Clin. Endocrinol. Metab. Latronico 83 2435 1998 10.1210/jc.83.7.2435 A unique constitutively activating mutation in third transmembrane helix of luteinizing hormone receptor causes sporadic male gonadotropin-independent precocious puberty 

  43. Mol. Pharmacol. Scheer 57 219 2000 Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the α1b-adrenergic receptor: effects on receptor isomerization and activation 

  44. Science Palczewski 289 739 2000 10.1126/science.289.5480.739 Crystal structure of rhodopsin: a G protein-coupled receptor 

  45. J. Mol. Biol. Fleishman 340 307 2004 10.1016/j.jmb.2004.04.064 An evolutionarily conserved network of amino acids mediates gating in voltage-dependent potassium channels 

  46. Q. Rev. Biophys. Harris 34 325 2001 10.1017/S0033583501003705 Emerging issues of connexin channels: biophysics fills the gap 

  47. Mol. Cell Fleishman 15 879 2004 10.1016/j.molcel.2004.08.016 A C-α model for the transmembrane α-helices of gap-junction intercellular channels 

  48. Nat. Rev. Mol. Cell Biol. Kaback 2 610 2001 10.1038/35085077 The kamikaze approach to membrane transport 

  49. Curr. Opin. Neurobiol. Karlin 3 299 1993 10.1016/0959-4388(93)90121-E Structure of nicotinic acetylcholine receptors 

  50. Biochemistry Lemmon 31 12719 1992 10.1021/bi00166a002 Sequence specificity in the dimerization of transmembrane α-helices 

  51. Methods Enzymol. Karlin 293 123 1998 10.1016/S0076-6879(98)93011-7 Substituted-cysteine accessibility method 

  52. Biochemistry Kwaw 39 3134 2000 10.1021/bi992509g Thiol cross-linking of cytoplasmic loops in the lactose permease of Escherichia coli 

  53. Proc. Natl. Acad. Sci. U. S. A. Sorgen 99 14037 2002 10.1073/pnas.182552199 An approach to membrane protein structure without crystals 

  54. Biopolymers Torres 59 396 2001 10.1002/1097-0282(200111)59:6<396::AID-BIP1044>3.0.CO;2-Y Site-specific examination of secondary structure and orientation determination in membrane proteins: the peptidic 13C18O group as a novel infrared probe 

  55. Biochemistry Furthmayr 15 1137 1976 10.1021/bi00650a028 Subunit structure of human erythrocyte glycophorin A 

  56. J. Mol. Biol. Russ 296 911 2000 10.1006/jmbi.1999.3489 The GxxxG motif: a framework for transmembrane helix-helix association 

  57. J. Mol. Biol. Senes 296 921 2000 10.1006/jmbi.1999.3488 Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions 

  58. Protein Eng. Sternberg 3 245 1990 10.1093/protein/3.4.245 A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization 

  59. Biochemistry Treutlein 31 12726 1992 10.1021/bi00166a003 The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices 

  60. Proteins Adams 26 257 1996 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.0.CO;2-B Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching 

  61. J. Mol. Biol. Fleishman 321 363 2002 10.1016/S0022-2836(02)00590-9 A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane α-helices 

  62. Proc. Natl. Acad. Sci. U. S. A. Fleishman 99 15937 2002 10.1073/pnas.252640799 A putative activation switch in the transmembrane domain of erbB2 

  63. J. Biol. Chem. Mendrola 277 4704 2002 10.1074/jbc.M108681200 The single transmembrane domains of ErbB receptors self-associate in cell membranes 

  64. FEBS Lett. Abramson 555 96 2003 10.1016/S0014-5793(03)01087-1 The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport 

  65. Proc. Natl. Acad. Sci. U. S. A. Yohannan 101 959 2004 10.1073/pnas.0306077101 The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors 

  66. Bioinformatics Glaser 19 163 2003 10.1093/bioinformatics/19.1.163 ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information 

  67. Protein Eng. Des. Sel. Beuming 18 119 2005 10.1093/protein/gzi013 Modeling membrane proteins based on low-resolution electron microscopy maps: a template for the TM domains of the oxalate transporter OxlT 

  68. Science Schueler-Furman 310 638 2005 10.1126/science.1112160 Progress in modeling of protein structures and interactions 

  69. Proteins Gobel 18 309 1994 10.1002/prot.340180402 Correlated mutations and residue contacts in proteins 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로