$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage

Plant science, v.171 no.1, 2006년, pp.175 - 182  

Yang, K.A. ,  Lim, C.J. ,  Hong, J.K. ,  Park, C.Y. ,  Cheong, Y.H. ,  Chung, W.S. ,  Lee, K.O. ,  Lee, S.Y. ,  Cho, M.J. ,  Lim, C.O.

Abstract AI-Helper 아이콘AI-Helper

If plants are pre-exposed to moderate heat stress, they can acquire enhanced tolerance to otherwise lethal high temperatures. To elucidate gene regulatory events involved in the acquisition of thermotolerance, we here conducted a comprehensive transcriptomic analysis. Chinese cabbage microarrays (Br...

주제어

참고문헌 (48)

  1. Physiol. Plant Kacperska 122 159 2004 10.1111/j.0031-9317.2004.00388.x Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? 

  2. Plant Physiol. Larkindale 138 882 2005 10.1104/pp.105.062257 Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance 

  3. J. Exp. Bot. Neill 53 1237 2002 10.1093/jexbot/53.372.1237 Hydrogen peroxide and nitric oxide as signaling molecules in plants 

  4. Trends Plant Sci. Sung 8 179 2003 10.1016/S1360-1385(03)00047-5 Acquired tolerance to temperature extremes 

  5. Ann. Rev. Plant Physiol. Plant Mol. Biol. Vierling 42 579 1991 10.1146/annurev.pp.42.060191.003051 The roles of heat shock proteins in plants 

  6. Plant Physiol. Rizhsky 134 1683 2004 10.1104/pp.103.033431 When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress 

  7. Plant J. Busch 41 1 2005 10.1111/j.1365-313X.2004.02272.x Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana 

  8. Mol. Gen. Genet. Prandl 258 269 1998 10.1007/s004380050731 HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confer thermotolerance when overexpressed in transgenic plants 

  9. Plant Physiol. Keeler 123 1121 2000 10.1104/pp.123.3.1121 Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean 

  10. Plant Cell Queitsch 12 2000 10.1105/tpc.12.4.479 Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis 

  11. Genes Dev. Mishra 16 1555 2002 10.1101/gad.228802 In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato 

  12. Plant Physiol. Hong 132 757 2003 10.1104/pp.102.017145 Arabidopsis hot mutants define multiple functions required for acclimation to high temperature 

  13. Plant Mol. Biol. Boston 32 191 1996 10.1007/BF00039383 Molecular chaperones and protein folding in plants 

  14. Trends Plant Sci. Wang 9 244 2004 10.1016/j.tplants.2004.03.006 Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response 

  15. Curr. Opin. Biotech. Smirnoff 9 214 1998 10.1016/S0958-1669(98)80118-3 Plant resistance to environmental stress 

  16. Plant Physiol. Pastori 129 460 2002 10.1104/pp.011021 Common components, networks, and pathways of cross tolerance to stress. The central role of “redox” and abscisic acid-mediated controls 

  17. J. Plant Physiol. Larkindale 161 405 2004 10.1078/0176-1617-01239 Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene 

  18. Plant Sci. Yang 168 959 2005 10.1016/j.plantsci.2004.11.011 Identification of Chinese cabbage genes up-regulated by prolonged cold by using microarray analysis 

  19. Biochemistry Chirgwin 18 5294 1979 10.1021/bi00591a005 Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease 

  20. Plant Mol. Biol. Finkelstein 48 119 2002 10.1023/A:1013765922672 Microarray data quality analysis: lessens from the AFGC project 

  21. 10.1186/gb-2002-3-11-research0062 I.V. Yang, E. Chen, J.P. Hasseman, W. Liang, B.C. Frank, S. Wang, V. Sharov, A.I. Saeed, J. White, J. Li, N.H. Lee, T.J. Yeatman, J. Quackenbush, Within the fold: assessing differential expression measures and reproducibility in microarray assays, Genome Biol. 3 (2002) research0062. 

  22. Ann. Bot. Barcelo 82 97 1998 10.1006/anbo.1998.0655 Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants 

  23. J. Exp. Bot. Waters 47 325 1996 10.1093/jxb/47.3.325 Review article. Evolution, structure and function of the small heat shock proteins in plants 

  24. Plant Physiol. Schoffl 117 1135 1998 10.1104/pp.117.4.1135 Regulation of the heat-shock response 

  25. Proc. Natl. Acad. Sci. U.S.A. Horvath 95 3513 1998 10.1073/pnas.95.7.3513 Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene” 

  26. Proc. Natl. Acad. Sci. U.S.A. Tsvetkova 99 13504 2002 10.1073/pnas.192468399 Small heat-shock proteins regulate membrane lipid polymorphism 

  27. Plant Physiol. Desikan 127 159 2001 10.1104/pp.127.1.159 Regulation of the Arabidopsis transcriptome by oxidative stress 

  28. Plant Physiol. Rossel 130 1109 2002 10.1104/pp.005595 Global changes in gene expression in response to high light in Arabidopsis 

  29. Plant Cell Neta-Sharir 17 1829 2005 10.1105/tpc.105.031914 Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation 

  30. Biochim. Biophys. Acta Sun 1577 1 2002 10.1016/S0167-4781(02)00417-7 Small heat shock proteins and stress tolerance in plants 

  31. Cell Bradley 70 21 1992 10.1016/0092-8674(92)90530-P Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response 

  32. J. Exp. Bot. Degenhardt 51 595 2000 10.1093/jexbot/51.344.595 Cell wall adaptations to multiple environmental stresses in maize roots 

  33. Annu. Rev. Biochem. McNeil 53 625 1984 10.1146/annurev.bi.53.070184.003205 Structure and function of the primary cell walls of plants 

  34. Annu. Rev. Plant Physiol. Plant Mol. Biol. Hayashi 40 139 1989 10.1146/annurev.pp.40.060189.001035 Xyloglucans in the primary cell wall 

  35. Plant Cell Physiol. Rose 43 1421 2002 10.1093/pcp/pcf171 The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature 

  36. Plant Cell Xu 7 1555 1995 10.1105/tpc.7.10.1555 Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase 

  37. Plant Cell Bourquin 14 3073 2002 10.1105/tpc.007773 Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues 

  38. J. Exp. Bot. Oh 54 2709 2003 10.1093/jxb/erg304 Transcriptional regulation of secondary growth in Arbidopsis thanlian 

  39. Plant Biol. (Stuttg) Albert 6 402 2004 10.1055/s-2004-817959 The cell wall-modifying xyloglucan endotransglycosylase/hydrolase LeXTH1 is expressed during the defence reaction of tomato against the plant parasite Cuscuta reflexa 

  40. Plant Mol. Biol. Ko 55 433 2004 10.1007/s11103-004-1051-z Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth 

  41. Nature Finkel 408 239 2000 10.1038/35041687 Oxidants, oxidative stress and the biology of ageing 

  42. Trends Plant Sci. Mitter 7 405 2002 10.1016/S1360-1385(02)02312-9 Oxidative stress, antioxidants and stress tolerance 

  43. Plant Physiol. Dat 116 1351 1998 10.1104/pp.116.4.1351 Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings 

  44. Plant Physiol. Schopfer 104 1269 1994 10.1104/pp.104.4.1269 Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper 

  45. Plant Cell Bestwick 9 209 1997 10.1105/tpc.9.2.209 Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonase syringae pv phaseolicola 

  46. Phytochemistry Liu 52 545 1999 10.1016/S0031-9422(99)00231-9 Localization of hydrogen peroxide production in Zinna elegans L. stems 

  47. J. Exp. Bot. Karlsson 56 2085 2005 10.1093/jxb/eri207 Hydrogen peroxide and expression of hipl-superoxide dismutase are associated with the development of secondary cell walls in Zinnia elegans 

  48. Plant Cell Brisson 6 1703 1994 10.1105/tpc.6.12.1703 Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로