$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Recent progress of nano-technology with NSOM

Micron : the international research and review journal for microscopy, v.38 no.4, 2007년, pp.409 - 426  

Kim, JunHo (Department of Physics, University of Incheon, 177 Dohwa-Dong, Nam-Gu, Incheon 402-749, Republic of Korea) ,  Song, Ki-Bong (Biosensor Team, ETRI, 161 Gajeong-Dong, Yuseong-Gu, Daejeon 305-350, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractRecent progress of nano-technology with near-field scanning optical microscope (NSOM) is surveyed in this article. We focus mainly on NSOM, nano-scale spectroscopy with NSOM, probe technology of NSOM, and study of nano-structured metallic surface with NSOM. First, we follow developments of a...

주제어

참고문헌 (240)

  1. Ultramicroscopy Abraham 71 93 1998 10.1016/S0304-3991(97)00114-9 Micromachined aperture probe tip for multifunctional scanning probe microscopy 

  2. Opt. Lett. Aigouy 24 187 1999 10.1364/OL.24.000187 Polarization effects in apertureless scanning near-field optical microscopy: an experimental study 

  3. Appl. Phys. Lett. Aigouy 76 397 2000 10.1063/1.125766 Near-field optical spectroscopy using an incoherent light source 

  4. Appl. Phys. Lett. Alkaisi 75 3560 1999 10.1063/1.125388 Sub-diffraction-limited patterning using evanescent near-field optical lithography 

  5. Microelectron. Eng. Alkaisi 53 237 2000 10.1016/S0167-9317(00)00305-1 70nm features on 140nm period using evanescent near field optical lithography 

  6. Nature Ash 237 510 1972 10.1038/237510a0 Super-resolution aperture scanning microscope 

  7. Appl. Phys. Lett. Austin 84 5299 2004 10.1063/1.1766071 Fabrication of 5nm linewidth and 14nm pitch features by nanoimprint lithography 

  8. Appl. Phys. Lett. Avouris 71 285 1997 10.1063/1.119521 Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication 

  9. Appl. Opt. Bachelot 36 2160 1997 10.1364/AO.36.002160 Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip 

  10. J. Appl. Phys. Bachelot 94 2060 2003 10.1063/1.1585117 Apertureless near-field optical microscopy: a study of the local tip field enhancement using photosensitive azobenzene-containing films 

  11. J. Vac. Sci. Technol. B Bailey 18 3572 2000 10.1116/1.1324618 Step and flash imprint lithography: template surface treatment and defect analysis 

  12. J. Vac. Sci. Technol. B Bailey 19 2806 2001 10.1116/1.1420203 Step and flash imprint lithography: defect analysis 

  13. Phys. Rev. B Berini 61 10484 2000 10.1103/PhysRevB.61.10484 Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures 

  14. Phys. Rev. B Berini 63 1254171 2001 10.1103/PhysRevB.63.125417 Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures 

  15. Phys. Rev. Bethe 66 163 1944 10.1103/PhysRev.66.163 Theory of diffraction by small holes 

  16. Appl. Phys. Lett. Betzig 51 2088 1987 10.1063/1.98956 Collection mode near-field scanning optical microscopy 

  17. Science Betzig 251 1468 1991 10.1126/science.251.5000.1468 Breaking the diffraction barrier: optical microscopy on a nanometric scale 

  18. Appl. Phys. Lett. Betzig 60 2484 1992 10.1063/1.106940 Combined shear force and near-field scanning optical microscopy 

  19. Microelectron. Eng. Blaikie 46 85 1999 10.1016/S0167-9317(99)00021-0 Nanolithography using optical contact exposure in the evanescent near field 

  20. Philips Res. Rep. Bouwkamp 5 321 1950 On Bethe's theory of diffraction by small holes 

  21. Rep. Prog. Phys. Bouwkamp 17 35 1954 10.1088/0034-4885/17/1/302 Diffraction theory 

  22. Appl. Phys. Lett. Bouhelier 79 683 2001 10.1063/1.1389767 Electrolytic formation of nanoapertures for scanning near-field optical microscopy 

  23. Phys. Rev. B Bouhelier 63 155404-1 2001 10.1103/PhysRevB.63.155404 Plasmon optics of structured silver films 

  24. Phys. Rev. Lett. Bouhelier 90 013903-1 2003 10.1103/PhysRevLett.90.013903 Near-field second-harmonic generation induced by local field enhancement 

  25. Phys. Rev. Lett. Bozhevolnyi 78 2823 1997 10.1103/PhysRevLett.78.2823 Two-dimensional micro-optics of surface plasmons 

  26. Phys. Rev. B Bozhevolnyi 78 10899 1998 10.1103/PhysRevB.58.10899 Elastic scattering of surface plasmon polaritons: modeling and experiment 

  27. Opt. Commun. Bozhevolnyi 152 221 1998 10.1016/S0030-4018(98)00176-X Far- and near-field second-harmonic imaging of ferroelectric domain walls 

  28. Phys. Rev. B Brongersma 62 R16356 2000 10.1103/PhysRevB.62.R16356 Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit 

  29. Appl. Phys. Lett. Bragas 72 2075 1998 10.1063/1.121280 Laser field enhancement at the scanning tunneling microscope junction measured by optical rectification 

  30. Appl. Phys. Lett. Chou 21 3114 1995 10.1063/1.114851 Imprint of sub-25nm vias and trenches in polymers 

  31. J. Vac. Sci. Technol. B Chou 15 2897 1997 10.1116/1.589752 Sub-10nm imprint lithography and applications 

  32. Microwave Opt. Technol. Lett. Cory 18 120 1998 10.1002/(SICI)1098-2760(19980605)18:2<120::AID-MOP10>3.0.CO;2-B Electric field intensity variation in the vicinity of a perfectly conducting conical probe: application to near-field microscopy 

  33. Opt. Commun. Courjon 71 23 1989 10.1016/0030-4018(89)90297-6 Scanning tunneling optical microscopy 

  34. Appl. Phys. Lett. Dagata 56 2001 1990 10.1063/1.102999 Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air 

  35. J. Appl. Phys. Dagata 70 3661 1991 10.1063/1.350345 Nanolithography on III-V semiconductor surfaces using a scanning tunneling microscope operating in air 

  36. J. Appl. Phys. Dagata 84 6891 1998 10.1063/1.368986 Role of space charge in scanned probe oxidation 

  37. Appl. Phys. Lett. Dagata 76 2710 2000 10.1063/1.126451 Predictive model for scanned probe oxidation kinetics 

  38. Appl. Phys. Lett. Davy 73 2594 1998 10.1063/1.122516 Influence of the water layer on the shear force damping in near-field microscopy 

  39. J. Appl. Phys. Dickson 97 033505-1 2005 10.1063/1.1841465 Near-field second-harmonic imaging of magnetic domains 

  40. Appl. Phys. Lett. Ditlbacher 83 3665 2003 10.1063/1.1625107 Efficiency of local light-plasmon coupling 

  41. Appl. Phys. Lett. Ditlbacher 81 1762 2002 10.1063/1.1506018 Two-dimensional optics with surface plasmon polaritons 

  42. Appl. Phys. Lett. Ditlbacher 80 404 2002 10.1063/1.1435410 Fluorescence imaging of surface plasmon fields 

  43. Phys. Rev. Lett. Dorn 91 233901-1 2003 10.1103/PhysRevLett.91.233901 Sharper focus for a radially polarized light beam 

  44. Chem. Rev. Dunn 99 2891 1999 10.1021/cr980130e Near-field scanning optical microscopy 

  45. J. Appl. Phys. Durig 59 3318 1986 10.1063/1.336848 Near-field optical-scanning microscopy 

  46. Appl. Phys. Lett. Eckert 77 3695 2000 10.1063/1.1330571 Near-field fluorescence imaging with 32nm resolution based on microfabricated cantilevered probes 

  47. J. Microsc. Eckert 202 7 2001 10.1046/j.1365-2818.2001.00880.x Near-field optical microscopy based on microfabricated probes 

  48. Science Fang 308 534 2005 10.1126/science.1108759 Sub-diffraction-limited optical imaging with a silver superlens 

  49. Phys. Rev. Lett. Fischer 62 458 1989 10.1103/PhysRevLett.62.458 Observation of single-particle plasmons by near-field optical microscopy 

  50. J. Microsc. Fischer 176 231 1994 10.1111/j.1365-2818.1994.tb03520.x The tetrahedral tip as a probe for scanning near-field optical microscopy at 30nm resolution 

  51. Appl. Phys. Lett. Frey 81 5030 2002 10.1063/1.1530736 Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe 

  52. Phys. Rev. Lett. Frey 93 200801-1 2004 10.1103/PhysRevLett.93.200801 High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip 

  53. Appl. Phys. Lett. Froehlich 70 1500 1997 10.1063/1.118365 Mechanical resonance behavior of near-field optical microscope probes 

  54. Ultramicroscopy Fujihira 57 176 1995 10.1016/0304-3991(94)00132-7 Near-field optical microscopic recording on Langmuir-Blodgett (LB) films and chemically modified surfaces 

  55. Ultramicroscopy Fujihira 61 271 1995 10.1016/0304-3991(95)00146-8 Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and AFM 

  56. Opt. Commun. Furukawa 148 221 1998 10.1016/S0030-4018(97)00687-1 Local field enhancement with an apertureless near-field-microscope probe 

  57. Appl. Phys. Lett. Garcia 72 2295 1998 10.1063/1.121340 Local oxidation of silicon surfaces by dynamic force microscopy: nanofabrication and water bridge formation 

  58. Appl. Phys. Lett. Garcia-Parajo 65 1498 1994 10.1063/1.112024 Simultaneous scanning tunneling microscope and collection mode scanning near-field optical microscope using gold coated optical fiber probes 

  59. Rev. Sci. Instrum. Genolet 72 3877 2001 10.1063/1.1394182 Micromachined photoplastic probe for scanning near-field optical microscopy 

  60. Phys. Rev. Lett. Gerton 93 18 180801-1 2004 10.1103/PhysRevLett.93.180801 Tip-enhanced fluorescence microscopy at 10 nanometer resolution 

  61. Rep. Prog. Phys. Girard 68 1883 2005 10.1088/0034-4885/68/8/R05 Near fields in nanostructures 

  62. Appl. Phys. Lett. Goodberlet 81 1315 2002 10.1063/1.1495538 Patterning sub-50nm features with near-field embedded-amplitude masks 

  63. Appl. Phys. Lett. Gramotnev 85 6323 2004 10.1063/1.1839283 Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface 

  64. Appl. Phys. Lett. Gregor 85 6323 1996 Probe-surface interaction in near-field optical microscopy: the nonlinear bending force mechanism 

  65. Ultramicroscopy Gleyzes 57 318 1995 10.1016/0304-3991(94)00160-O Near field optical microscopy using a metallic vibrating tip 

  66. Appl. Phys. Lett. Gucciardi 86 2031091 2005 10.1063/1.1929877 Observation of tip-to-sample heat transfer in near-field optical microscopy using metal-coated fiber probes 

  67. Appl. Phys. Lett. Haefliger 85 4466 2004 10.1063/1.1815055 Contrast and scattering efficiency of scattering-type near-field optical probes 

  68. Appl. Phys. Lett. Hamann 76 1953 2000 10.1063/1.126223 Near-field fluorescence imaging by localized field enhancement near a sharp probe tip 

  69. Appl. Phys. Lett. Harootunian 49 674 1986 10.1063/1.97565 Super-resolution fluorescence near-field scanning optical microscopy 

  70. Phys. Rev. Lett. Hartschuh 90 095503-1 2003 10.1103/PhysRevLett.90.095503 High-resolution near-field Raman microscopy of single-walled carbon nanotubes 

  71. Phil. Trans. R. Soc. Lond. A Hartschuh 362 807 2004 10.1098/rsta.2003.1348 Tip-enhanced optical spectroscopy 

  72. J. Microsc. Hayazawa 194 472 1999 10.1046/j.1365-2818.1999.00563.x Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope 

  73. Opt. Commun. Hayazawa 183 333 2000 10.1016/S0030-4018(00)00894-4 Metallized tip amplification of near-field Raman scattering 

  74. Chem. Phys. Lett. Hayazawa 335 369 2001 10.1016/S0009-2614(01)00065-3 Near-field Raman scattering enhanced by a metallized tip 

  75. J. Chem. Phys. Hayazawa 117 1296 2002 10.1063/1.1485731 Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope 

  76. Chem. Phys. Lett. Hayazawa 376 174 2003 10.1016/S0009-2614(03)00883-2 Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy 

  77. J. Appl. Phys. Hayazawa 95 2676 2004 10.1063/1.1642735 Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy 

  78. Appl. Phys. Lett. Hayazawa 85 6239 2004 10.1063/1.1839646 Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy 

  79. Appl. Phys. Lett. H’Dhili 79 4019 2001 10.1063/1.1425083 Near-field optics: direct observation of the field enhancement below an apertureless probe using a photosensitive polymer 

  80. J. Appl. Phys. Hecht 81 2492 1997 10.1063/1.363956 Facts and artifacts in near-field optical microscopy 

  81. J. Appl. Phys. Hecht 84 5873 1998 10.1063/1.368902 Influence of detection conditions on near-field optical imaging 

  82. J. Chem. Phys. Hecht 112 7761 2000 10.1063/1.481382 Scanning near-field optical microscopy with aperture probes: fundamentals and applications 

  83. Phys. Rev. Lett. Hillenbrand 85 3029 2000 10.1103/PhysRevLett.85.3029 Complex optical constants on a subwavelength scale 

  84. Appl. Phys. Lett. Hillenbrand 76 3478 2000 10.1063/1.126683 Higher-harmonics generation in tapping-mode atomic-force microscopy: insights into the tip-sample interaction 

  85. Appl. Phys. B Hillenbrand 73 239 2001 10.1007/s003400100656 Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy 

  86. J. Microsc. Hillenbrand 202 77 2001 10.1046/j.1365-2818.2001.00794.x Pure optical contrast in scattering-type scanning near-field optical microscopy 

  87. Nature Hillenbrand 418 159 2002 10.1038/nature00899 Phonon-enhanced light-matter interaction at the nanometre scale 

  88. Appl. Phys. Lett. Hillenbrand 80 25 2002 10.1063/1.1428767 Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10nm resolution by back-scattering near-field optical microscopy 

  89. Appl. Phys. Lett. Hillenbrand 83 368 2003 10.1063/1.1592629 Coherent imaging of nanoscale plasmon pattern with a carbon nanotube optical probe 

  90. Ultramicroscopy Hoffmann 61 165 1995 10.1016/0304-3991(95)00122-0 Comparison of mechanically drawn and protection layer chemically etched optical fiber tips 

  91. Opt. Lett. Inouye 19 159 1994 10.1364/OL.19.000159 Near-field scanning optical microscope with a metallic probe tip 

  92. Appl. Phys. Lett. Kapkiai 84 3750 2004 10.1063/1.1737464 Hybrid near-field scanning optical microscopy tips for live cell measurement 

  93. Appl. Phys. Lett. Karrai 66 1842 1995 10.1063/1.113340 Piezoelectric tip-sample distance control for near field optical microscopes 

  94. Appl. Phys. Lett. Kavaldjiev 67 2771 1995 10.1063/1.114588 On the heating of the fiber tip in a near-field scanning optical microscope 

  95. Ultramicroscopy Kawata 57 313 1995 10.1016/0304-3991(94)00159-K Scanning probe optical microscopy using a metallic probe tip 

  96. J. Appl. Phys. Kawata 85 1294 1999 10.1063/1.369260 Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip 

  97. Appl. Phys. Lett. Kazantsev 72 689 1998 10.1063/1.120847 Sample temperature measurement in a scanning near-field optical microscope 

  98. Phil. Trans. R. Soc. Lond. A Keilmann 462 787 2004 10.1098/rsta.2003.1347 Near-field microscopy by elastic scattering from a tip 

  99. Appl. Opt. Kerker 19 3373 1980 10.1364/AO.19.003373 Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles 

  100. J. Microsc. Kim 202 16 2001 10.1046/j.1365-2818.2001.00820.x Moulded photoplastic probes for near-field optical applications 

  101. J. Microelectromech. Syst. Kim 11 175 2002 10.1109/JMEMS.2002.1007395 Surface modification with self-assembled monolayers for nanoscale replication of photoplastic MEMS 

  102. J. Nanosci. Nanotechnol. Kim 2 55 2002 10.1166/jnn.2002.073 Nanomold radius control by thermal oxidation sharpening and wet etching 

  103. J. Microsc. Kim 209 267 2003 10.1046/j.1365-2818.2003.01134.x Photoplastic near-field optical probe with sub-100nm aperture made by replication from a nanomould 

  104. J. Microsc. Kim 209 236 2003 10.1046/j.1365-2818.2003.01132.x Near-field imaging of surface plasmon on Au nano-dots fabricated by scanning probe lithography 

  105. Jpn. J. Appl. Phys. Kim 42 7635 2003 10.1143/JJAP.42.7635 Scanning near-field optical microscope study of Ag nanoprotrusions fabricated by nano-oxidation with atomic force microscope 

  106. J. Vac. Sci. Technol. Kim 22 212 2004 10.1116/1.1642641 Local excitation of surface plasmon in structured Au films by atomic force anodic oxidation 

  107. J. Korean Phys. Soc. Kim 47 s186 2005 Near-field scanning optical microscope study of metallic nano-protrusions 

  108. Phys. Rev. Lett. Kneipp 78 1667 1997 10.1103/PhysRevLett.78.1667 Single molecule detection using surface-enhanced Raman scattering (SERS) 

  109. Phys. Rev. Lett. Kneipp 84 3470 2000 10.1103/PhysRevLett.84.3470 Surface-enhanced and normal Stokes and anti-Stokes Raman spectroscopy of single-walled carbon nanotubes 

  110. Nature Knoll 399 134 1999 10.1038/20154 Near-field probing of vibrational absorption for chemical microscopy 

  111. J. Microsc. Knoll 194 512 1999 10.1046/j.1365-2818.1999.00496.x Mid-infrared scanning near-field optical microscope resolves 30nm 

  112. Opt. Commun. Knoll 182 321 2000 10.1016/S0030-4018(00)00826-9 Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy 

  113. Appl. Phys. Lett. Knoll 77 3980 2000 10.1063/1.1330756 Infrared conductivity mapping for nanoelectronics 

  114. Phys. Rev. B Koglin 55 7977 1997 10.1103/PhysRevB.55.7977 Material contrast in scanning near-field optical microscopy at 1-10nm resolution 

  115. New J. Phys. Kottmann 2 27.1 2000 10.1088/1367-2630/2/1/327 Field polarization and polarization charge distributions in plasmon resonant nanoparticles 

  116. Chem. Phys. Lett. Kottmann 341 1 2001 10.1016/S0009-2614(01)00171-3 Dramatic localized electromagnetic enhancement in plasmon resonant nanowires 

  117. J. Microsc. Kramper 194 340 1999 10.1046/j.1365-2818.1999.00546.x A novel fabrication method for fluorescence based apertureless scanning near field optical microscope probes 

  118. Phys. Rev. Lett. Krenn 82 2590 1999 10.1103/PhysRevLett.82.2590 Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles 

  119. Europhys. Lett. Krenn 60 5 663 2002 10.1209/epl/i2002-00360-9 Non-diffraction-limited light transport by gold nanowires 

  120. J. Microsc. Krenn 209 167 2003 10.1046/j.1365-2818.2003.01088.x Surface plasmon micro- and nano-optics 

  121. Phil. Trans. R. Soc. Lond. A Krenn 362 739 2004 10.1098/rsta.2003.1344 Surface plasmon polaritons in metal stripes and wires 

  122. J. Chem. Phys. Krug 116 10895 2002 10.1063/1.1479723 Design of near-field probes with optimal field enhancement by finite difference time domain electromagnetic simulation 

  123. J. Microsc. Kuhn 202 2 2001 10.1046/j.1365-2818.2001.00829.x Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy 

  124. Kunz 1993 The Finite Difference Time Domain Method for Electromagnetics 

  125. J. Vac. Sci. Technol. B Kunz 21 78 2003 10.1116/1.1532024 Large-area patterning of ∼50nm structures on flexible substrates using near-field 193nm radiation 

  126. Ultramicroscopy Lambelet 71 117 1998 10.1016/S0304-3991(97)00055-7 Reduction of tip-sample interaction forces for scanning near-field optical microscopy in a liquid environment 

  127. Phys. Rev. Lett. Lamprecht 84 4721 2000 10.1103/PhysRevLett.84.4721 Metal nanoparticle gratings: influence of Dipolar particle interaction on the plasmon resonance 

  128. Ultramicroscopy Lewis 13 227 1984 10.1016/0304-3991(84)90201-8 Development of a 500A spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures 

  129. Nature Lewis 354 214 1991 10.1038/354214a0 Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions 

  130. J. Appl. Phys. Liang 92 6895 2002 10.1063/1.1518762 Properties of amorphous Al-Yb alloy coating for scanning near-field optical microscopy 

  131. Appl. Phys. Lett. Lieberman 62 1335 1993 10.1063/1.108722 Simultaneous scanning tunneling and optical near-field imaging with a micropipette 

  132. Nano Lett. Liu 5 957 2005 10.1021/nl0506094 Surface plasmon interference nanolithography 

  133. Appl. Phys. Lett. Maier 78 16 2001 10.1063/1.1337637 Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices 

  134. Appl. Phys. Lett. Maier 81 1714 2002 10.1063/1.1503870 Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss 

  135. Phys. Rev. B Maier 65 193408 2002 10.1103/PhysRevB.65.193408 Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy 

  136. Nat. Mater. Maier 2 229 2003 10.1038/nmat852 Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides 

  137. Phys. Rev. B Maier 67 2054021 2003 10.1103/PhysRevB.67.205402 Optical pulse propagation in metal nanoparticle chain waveguides 

  138. Appl. Phys. Lett. Maier 84 3990 2004 10.1063/1.1753060 Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing 

  139. Appl. Phys. Lett. Maier 86 071103-1 2005 10.1063/1.1862340 Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing 

  140. J. Appl. Phys. Maier 98 0111010 2005 10.1063/1.1951057 Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures 

  141. Appl. Phys. Lett. Mamin 61 1003 1992 10.1063/1.108460 Thermomechanical writing with an atomic force microscope tip 

  142. Appl. Phys. Lett. Matsumoto 68 34 1996 10.1063/1.116747 Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system 

  143. J. Vac. Sci. Technol. B McNab 18 2900 2000 10.1116/1.1319837 Analytic study of gratings patterned by evanescent near field optical lithography 

  144. Appl. Phys. Lett. Mertz 64 2338 1994 10.1063/1.111633 Optical near-field imaging with a semiconductor probe tip 

  145. Nature Michaelis 405 325 2000 10.1038/35012545 Optical microscopy with a single-molecule light source 

  146. Appl. Phys. Lett. Mihalcea 68 3531 1996 10.1063/1.116520 Multipurpose sensor tips for scanning near-field microscopy 

  147. J. Electrochem. Soc. Mihalcea 147 1970 2000 10.1149/1.1393468 Reproducible large-area microfabrication of sub-100nm apertures on hollow tips 

  148. Appl. Phys. Lett. Minh 75 4076 1999 10.1063/1.125541 Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy 

  149. Rev. Sci. Instrum. Minh 71 3111 2000 10.1063/1.1304867 High throughput aperture near-field scanning optical microscopy 

  150. J. Microsc. Minh 202 28 2001 10.1046/j.1365-2818.2001.00818.x Spatial distribution and polarization dependence of the optical near-field in a silicon microfabricated probe 

  151. Appl. Phys. Lett. Minh 79 3020 2001 10.1063/1.1416475 Hybrid optical fiber-apertured cantilever near-field probe 

  152. Appl. Phys. Lett. Miyatani 71 2632 1997 10.1063/1.120162 Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy 

  153. Opt. Commun. Mononobe 146 1-6 45 1998 10.1016/S0030-4018(97)00506-3 Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber 

  154. J. Chem. Phys. Mock 116 6755 2002 10.1063/1.1462610 Shape effects in plasmon resonance of individual colloidal silver nanoparticles 

  155. Appl. Phys. Lett. Mulin 28 437 1997 10.1063/1.120439 Use of solid electrolytic erosion for generating nano-aperture near-field collectors 

  156. Appl. Phys. Lett. Muramatsu 66 3245 1995 10.1063/1.113392 Near-field optical microscopy in liquids 

  157. Ultramicroscopy Muramatsu 61 265 1995 10.1016/0304-3991(95)00113-1 Development of near-field optic/atomic-force microscope for biological materials in aqueous solutions 

  158. Phys. Rev. Lett. Naber 89 210801-1 2002 10.1103/PhysRevLett.89.210801 Enhanced light confinement in a near-field optical probe with a triangular aperture 

  159. Science Nie 275 1102 1997 10.1126/science.275.5303.1102 Probing single molecules and single nanoparticles by surface-enhanced Raman scattering 

  160. Appl. Phys. Lett. Noell 70 1236 1997 10.1063/1.118540 Micromachined aperture probe tip for multifunctional scanning probe microscopy 

  161. Phys. Rev. Novikov B66 035403-1 2002 Channel polaritons 

  162. Phys. Rev. E Novotny 50 4094 1994 10.1103/PhysRevE.50.4094 Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function 

  163. Opt. Lett. Novotny 20 970 1995 10.1364/OL.20.000970 Scanning near-field optical probe with ultrasmall spot size 

  164. Ultramicroscopy Novotny 71 21 1998 10.1016/S0304-3991(97)00077-6 Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams 

  165. Ohtsu 1999 Near-Field Nano-Optics, From Basic Principles to Nano-Fabrication and Nano-Photonics 

  166. Ohtsu 2002 Progress in Nano-Electro-Optics. I. Basic and Theory of Near-Field Optics 

  167. Appl. Phys. Lett. Okajima 71 545 1997 10.1063/1.119604 Study of shear force between glass microprobe and mica surface under controlled humidity 

  168. Opt. Lett. Pile 29 1069 2004 10.1364/OL.29.001069 Channel plasmon-polariton in a triangular groove on a metal surface 

  169. Appl. Phys. Lett. Pile 87 061106-1 2005 10.1063/1.1991990 Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding 

  170. Appl. Phys. Lett. Pohl 44 651 1984 10.1063/1.94865 Optical stethoscopy: image recording with resolution λ/20 

  171. Opt. Commun. Quabis 179 1 2000 10.1016/S0030-4018(99)00729-4 Focusing light to a tighter spot 

  172. Phys. Rev. B Quidant 69 0854071 2004 10.1103/PhysRevB.69.085407 Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains 

  173. Opt. Lett. Quinten 23 1331 1998 10.1364/OL.23.001331 Electromagnetic energy transport via linear chains of silver nanoparticles 

  174. Raether 1998 Surface Plasmons on Smooth and Rough Surfaces and Gratings 

  175. Phys. Rev. B Reddick 39 767 1989 10.1103/PhysRevB.39.767 New form of scanning optical microscopy 

  176. Reitz 1992 Foundations of Electromagnetic Theory 

  177. Appl. Phys. Lett. Rensen 77 1557 2000 10.1063/1.1308058 Imaging soft samples in liquid with tuning fork based shear force microscopy 

  178. J. Vac. Sci. Technol. B Ruiter 14 597 1996 10.1116/1.589142 Microfabrication of near-field optical probes 

  179. Appl. Phys. Lett. Ruiter 71 28 1997 10.1063/1.119482 Dynamic behavior of tuning fork shear-force feedback 

  180. Appl. Phys. Lett. Saiki 74 2773 1999 10.1063/1.123307 Near-field optical fiber probe optimized for illumination-collection hybrid mode operation 

  181. Phys. Rev. Lett. Sanchez 82 4014 1999 10.1103/PhysRevLett.82.4014 Near-field fluorescence microscopy based on two-photon excitation with metal tips 

  182. J. Opt. A Sandoghdar 1 523 1999 10.1088/1464-4258/1/4/319 Prospects of apertureless SNOM with active probes 

  183. Appl. Phys. Lett. Shao 85 5346 2004 10.1063/1.1828239 Near-field-enhanced, mold-assisted, parallel direct nanostructuring of a gold thin film on glass 

  184. Appl. Phys. Lett. Shao 86 253107 2005 10.1063/1.1951052 Surface-plasmon-assisted nanoscale photolithography by polarized light 

  185. Appl. Phys. Lett. Schmid 72 2379 1998 10.1063/1.121362 Light-coupling masks for lensless, sub-wavelength optical lithography 

  186. Ultramicroscopy Schuerman 82 33 2000 10.1016/S0304-3991(99)00122-9 Microfabrication of a combined AFM-NSOM sensor 

  187. Appl. Phys. Lett. Smolyaninov 67 3859 1995 10.1063/1.115297 Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process 

  188. Phys. Rev. Lett. Smolyaninov 77 3877 1996 10.1103/PhysRevLett.77.3877 Imaging of surface plasmon scattering by lithographically created individual surface defects 

  189. Phys. Rev. B Smolyaninov 56 1601 1997 10.1103/PhysRevB.56.1601 Experimental study of surface plasmon scattering by individual surface defects 

  190. Opt. Lett. Smolyaninov 22 1592 1997 10.1364/OL.22.001592 Near-field second-harmonic imaging of ferromagnetic and ferroelectric materials 

  191. Appl. Phys. Lett. Smolyaninov 74 1942 1999 10.1063/1.123735 Near-field second harmonic imaging of lead zirconate titanate piezoceramic 

  192. J. Appl. Phys. Smolyaninov 89 206 2001 10.1063/1.1331342 Local crystal analysis using near-field optical second harmonic microscopy: application to thin ferroelectric films 

  193. Appl. Phys. Lett. Snow 64 1932 1994 10.1063/1.111746 Fabrication of Si nanostructures with an atomic force microscope 

  194. Science Snow 270 1639 1995 10.1126/science.270.5242.1639 AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties 

  195. Phys. Rev. Lett. Song 85 3842 2000 10.1103/PhysRevLett.85.3842 Direct observation of self-focusing with subdiffraction limited resolution using near-field scanning optical microscope 

  196. Appl. Phys. Lett. Song 80 2827 2002 10.1063/1.1473231 Technique to enhance the throughput on a near-field aperture by the use of self-focusing effect 

  197. Jpn. J. Appl. Phys. Song 42 4353 2003 10.1143/JJAP.42.4353 Fabrication of a high-throughput cantilever-style aperture tip by the use of the Bird's-beak effect 

  198. J. Appl. Phys. Sqalli 92 1078 2002 10.1063/1.1487918 Gold elliptical nanoantennas as probes for near field optical microscopy 

  199. Appl. Phys. Lett. Sqalli 83 584 2003 Improved tip performance for scanning near-field optical microscopy by the attachment of a single gold nanoparticle 

  200. J. Vac. Sci. Technol. B Srituravanich 22 6 3475 2004 10.1116/1.1823437 Sub-100nm lithography using ultrashort wavelength of surface plasmons 

  201. Nano Lett. Srituravanich 4 1085 2004 10.1021/nl049573q Plasmonic nanolithography 

  202. J. Vac. Sci. Technol. B Srituravanich 23 2636 2005 10.1116/1.2091088 Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask 

  203. Appl. Phys. Lett. Stahelin 68 2603 1996 10.1063/1.116195 Temperature profile of fiber tips used in scanning near-field optical microscopy 

  204. Appl. Phys. Lett. Stockle 75 160 1999 10.1063/1.124305 High-quality near-field optical probes by tube etching 

  205. Chem. Phys. Lett. Stockle 318 131 2000 10.1016/S0009-2614(99)01451-7 Nanoscale chemical analysis by tip-enhanced Raman spectroscopy 

  206. Microelect. Eng. Stopka 53 183 2000 10.1016/S0167-9317(00)00292-6 Multifunctional AFM/SNOM cantilever probes: fabrication and measurements 

  207. Appl. Phys. Lett. Sugimura 61 1288 1993 10.1063/1.110771 Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: a humidity effect on nanolithography 

  208. Phys. Chem. Sugimura 98 4352 1994 10.1021/j100067a023 Scanning tunneling microscope tip-induced anodization for nanofabrication of titanium 

  209. J. Microsc. Sugiura 194 291 1999 10.1046/j.1365-2818.1999.00523.x Fluorescence imaging with a laser trapping scanning near field optical microscope 

  210. Philos. Mag. Synge 6 356 1928 10.1080/14786440808564615 A suggested method for extending the microscopic resolution into the ultramicroscopic region 

  211. Philos. Mag. Synge 13 297 1932 10.1080/14786443209461931 An application of piezoelectricity to microscopy 

  212. Appl. Phys. Lett. Talley 69 3809 1996 10.1063/1.117112 High resolution fluorescence imaging with cantilevered near-field fiber optic probe 

  213. Appl. Phys. Lett. Talley 72 2954 1998 10.1063/1.121505 Single molecule detection and underwater fluorescence imaging with cantilevered near-field fiber optic probe 

  214. Appl. Phys. Lett. Takahashi 80 3479 2002 10.1063/1.1478780 Near-field second-harmonic generation at a metal tip apex 

  215. Appl. Phys. Lett. Tanaka 82 1158 2003 10.1063/1.1557323 Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide 

  216. Opt. Express Tanaka 13 256 2005 10.1364/OPEX.13.000256 Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides 

  217. J. Microsc. Taubner 210 311 2003 10.1046/j.1365-2818.2003.01164.x Performance of visible and mid-infrared scattering-type near-field optical microscopes 

  218. Appl. Phys. Lett. Taubner 85 5064 2004 10.1063/1.1827334 Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy 

  219. Nano Lett. Taubner 4 1669 2004 10.1021/nl0491677 Nanomechanical resonance tuning and phase effects in optical near-field interaction 

  220. Appl. Phys. Lett. Toledo-Crow 60 2957 1992 10.1063/1.106801 Near-field differential scanning optical microscope with atomic force regulation 

  221. Ultramicroscopy Tsai 57 2-3 130 1995 10.1016/0304-3991(94)00124-6 Applications of apertured photon scanning tunnelling microscopy (APSTM) 

  222. Appl. Opt. Valaskovic 34 1215 1995 10.1364/AO.34.001215 Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes 

  223. Appl. Phys. Lett. van Hulst 62 461 1993 10.1063/1.108933 Near-field optical microscope using a silicon-nitride probe 

  224. Appl. Phys. Lett. Wang 85 3599 2004 10.1063/1.1807020 Metal heterowaveguides for nanometric focusing of light 

  225. Appl. Phys. Lett. Wang 67 1295 1995 10.1063/1.114402 Nanofabrication of thin chromium film deposited on Si(100) surfaces by tip induced anodization in atomic force microscopy 

  226. Phys. Rev. B Watanabe 69 155418-1 2004 10.1103/PhysRevB.69.155418 Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule 

  227. Phys. Rev. B Weeber 60 9061 1999 10.1103/PhysRevB.60.9061 Plasmon polaritons of metallic nanowires for controlling submicron propagation of light 

  228. Nano Lett. Wei 4 1067 2004 10.1021/nl049604h Plasmon resonance of finite one-dimensional Au nanoparticle chains 

  229. J. Opt. Soc. Am. B Wessel 2 1538 1985 10.1364/JOSAB.2.001538 Surface-enhanced optical microscopy 

  230. Phys. Rev. E Xu 62 4318 2000 10.1103/PhysRevE.62.4318 Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering 

  231. Appl. Phys. Lett. Yatsui 71 1756 1997 10.1063/1.119390 Highly efficient excitation of optical near-field on an aperture fiber probe with an asymmetric structure 

  232. Appl. Phys. Lett. Yatsui 73 2090 1998 10.1063/1.122387 Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure 

  233. Appl. Phys. Lett. Yatsui 80 2257 2002 10.1063/1.1465520 Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology 

  234. Opt. Commun. Zayats 161 156 1999 10.1016/S0030-4018(98)00682-8 Electromagnetic field enhancement in the context of apertureless near-field microscopy 

  235. Opt. Commun. Zayats 178 245 2000 10.1016/S0030-4018(00)00655-6 Apertureless scanning near-field second-harmonic microscopy 

  236. J. Microsc. Zayats 202 94 2001 10.1046/j.1365-2818.2001.00810.x Apertureless near-field optical microscopy via local second-harmonic generation 

  237. Appl. Phys. Lett. Zeisel 68 2491 1996 10.1063/1.115831 Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips 

  238. Appl. Phys. Lett. Zenhausern 65 1623 1994 10.1063/1.112931 Apertureless near-field optical microscope 

  239. Science Zenhausern 269 1083 1995 10.1126/science.269.5227.1083 Scanning interferometric apertureless microscopy: optical imaging at 10A resolution 

  240. J. Vac. Sci. Technol. B Zhou 17 1954 1999 10.1116/1.590855 Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로