$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources 원문보기

Chemical engineering & technology, v.31 no.5, 2008년, pp.647 - 654  

Bechthold, I. (Fraunhofer Institute for Enviromental, Safety and Energy Technology UMSICHT, Oberhausen, Germany) ,  Bretz, K. (Fraunhofer Institute for Enviromental, Safety and Energy Technology UMSICHT, Oberhausen, Germany) ,  Kabasci, S. (Fraunhofer Institute for Enviromental, Safety and Energy Technology UMSICHT, Oberhausen, Germany) ,  Kopitzky, R. (Fraunhofer Institute for Enviromental, Safety and Energy Technology UMSICHT, Oberhausen, Germany) ,  Springer, A. (Fraunhofer Institute for Enviromental, Safety and Energy Technology UMSICHT, Oberhausen, Germany)

Abstract AI-Helper 아이콘AI-Helper

Succinic acid is predicted to be one of the future platform chemicals that can be derived from renewable resources. The improvements in biotechnological succinic acid production are presented. Chemical conversion pathways to &ggr;-butyrolactone, tetrahydrofuran, 1,4-butanediole, and pyrrolidones are...

주제어

참고문헌 (87)

  1. Busch, R., Hirth, T., Liese, A., Nordhoff, S., Puls, J., Pulz, O., Sell, D., Syldatk, C., Ulber, R.. Nutzung nachwachsender Rohstoffe in der industriellen Stoffproduktion. Chemie-Ingenieur-Technik, vol.78, no.3, 219-228.

  2. Carole, Tracy M., Pellegrino, Joan, Paster, Mark D.. Opportunities in the Industrial Biobased Products Industry. Applied biochemistry and biotechnology, vol.113, 0871-0886.

  3. E. Archambault (Ed.) F. Bertrand G. Côté O. Craig‐Dupont V. Larivière É. Vignola Gagné Towards a Canadian R&D Strategy for Bioproducts and Bioprocesses for National Research Council of Canada2004.http://www.science‐metrix.com/pdf/SM_2003_014_NRC_Canadian_R&D_Strategy.pdf 

  4. B. Hüsing G. Angerer S. Gaisser F. Marscheider‐Weidemann Ber.‐ Umweltbundesamt (Ger) 2003. 

  5. M. D. Paster J. Pellegrino T. M. Carole Industrial Bioproducts: Today and Tomorrow for the Office of the Biomass Program Office of Energy Efficiency and Renewable Energy US Department of Energy. Washington DC2003. 

  6. M. Patel M. Crank V. Dornburg B. Hermann B. Hüsing L. Overbeek F. Terragni E. Recchia Medium ang Long‐Term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources -The Potential of White Biotechnology: The Brew Project European Commission's GROWTH Programme (DG Research) Utrecht2006.http://www.chem.uu.nl/brew/ 

  7. T. A. Werpy G. Petersen (Ed.) Top Value Added Chemicals From Biomass for the U.S. Department of Energy (DOE) by National Renewable Energy Laboratory (NREL) 2004. (http://www.osti.gov/bridge) 

  8. M. Crank M. Patel F. Marscheider‐Weidemann J. Schleich B. Hüsing G. Angerer Techno‐economic Feasibility of Large‐scale Production of Bio.based Polymers in Europe (Pro‐BIP) for the European Commissions's Institute for Prospective Technological Studies (IPTS) Sevilla Spain2004. 

  9. Zeikus, J. G., Jain, M. K., Elankovan, P.. Biotechnology of succinic acid production and markets for derived industrial products. Applied microbiology and biotechnology, vol.51, no.5, 545-552.

  10. Appl. Environ. Microbiol. Ling E. T. M. 1213 35 1978 10.1128/aem.35.6.1213-1215.1978 

  11. ROSSI, CRISTIANO, HAUBER, JOSEPH, SINGER, THOMAS P.. Mitochondrial and Cytoplasmic Enzymes for the Reduction of Fumarate to Succinate in Yeast. Nature, vol.204, no.4954, 167-170.

  12. Lee, P. C., Lee, S. Y., Hong, S. H., Chang, H. N.. Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess and biosystems engineering, vol.26, no.1, 63-67.

  13. Guettler, Michael V., Rumler, Denise, Jain, Mahendra K.. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. International journal of systematic bacteriology, vol.49, no.1, 207-216.

  14. Lee, S. Lee, S. Hong, H. Chang, P.. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Applied microbiology and biotechnology, vol.58, no.5, 663-668.

  15. Vemuri, G N, Eiteman, M A, Altman, E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. Journal of industrial microbiology & biotechnology, vol.28, no.6, 325-332.

  16. Lin, Henry, Bennett, George N., San, Ka-Yiu. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metabolic engineering, vol.7, no.2, 116-127.

  17. Lin, Henry, Bennett, George N., San, Ka-Yiu. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnology and bioengineering, vol.90, no.6, 775-779.

  18. 10.1099/00207713-26-4-498 C. P. Davis D. Cleven J. Brown Int. J. Syst. Bateriol.1976 26. 

  19. Lee, Pyung Cheon, Lee, Woo Gi, Kwon, Sunhoon, Lee, Sang Yup, Chang, Ho Nam. Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration. Enzyme and microbial technology, vol.24, no.8, 549-554.

  20. 10.1002/1097-0290(20010105)72:1<41::AID-BIT6>3.0.CO;2-N 

  21. Lee, P.C., Lee, S.Y., Hong, S.H., Chang, H.N., Park, S.C.. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnology letters. : a monthly journal for the rapid communication of results and developments in all aspects of biotechnology, vol.25, no.2, 111-114.

  22. Lee, Pyung-Cheon, Lee, Woo-Gi, Lee, Sang-Yup, Chang, Ho-Nam, Chang, Yong-Keun. Fermentative Production of Succinic Acid from Glucose and Corn Steep Liquor by Anaerobiospirillum succiniciproducens. Biotechnology and bioprocess engineering : Bbe, vol.5, no.5, 379-381.

  23. Meynial-Salles, Isabelle, Dorotyn, Sophie, Soucaille, Philippe. A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnology and bioengineering, vol.99, no.1, 129-135.

  24. S. Kabasci et al. Schriftenreihe „Nachwachsende Rohstoffe”︁ Verlag T. Mann Gelsenkirchen2007 224. 

  25. der Werf, M. J. Van, Guettler, Michael V., Jain, Mahendra K., Zeikus, J. Gregory. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Archives of microbiology, vol.167, no.6, 332-342.

  26. M. V.Guettler M. K .Jain D.Rumler US Patent 5 573 931 1996. 

  27. M. V.Guettler M. K.Jain B. K.Soni US Patent 5 504 004 1996. 

  28. Lee, Sang Jun, Song, Hyohak, Lee, Sang Yup. Genome-Based Metabolic Engineering of Mannheimia succiniciproducens for Succinic Acid Production. Applied and environmental microbiology, vol.72, no.3, 1939-1948.

  29. D. A.Glassner R.Datta US Patent 5 143 834 1992. 

  30. R.Datta D. A.Glassner M. K.Jain J. R.Vick Roy US Patent 5 168 055 1992. 

  31. Huh, Yun Suk, Jun, Young-Si, Hong, Yeon Ki, Song, Hyohak, Lee, Sang Yup, Hong, Won Hi. Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process biochemistry, vol.41, no.6, 1461-1465.

  32. 10.1002/0471238961.1921030306211301.a01.pub2 C. Fumagalli Succinic Acid and Succinic Anhydride inKirk Othmer Encyclopedia of Chemical Technology 5th ed. John Wiley & Sons Hoboken2006. 

  33. 10.1002/9783527619849.ch30 T. A. Werpy J. Frye J. Holladay inBiorefineries - Industrial Processes and Products Vol. 2 Status Quo and Future Directions(Eds.: B. Kamm P. R. Gruber M. Kamm) Wiley‐VCH Weinheim Germany2006 367. 

  34. T. A.Werpy J. G.Frye Y.Wang A. H.Zacher US Patent 6 632 951 2004. 

  35. T. A.Werpy J. G.Frye Y.Wang A. H.Zacher US Patent 6 603 021 2004. 

  36. T. A. Werpy J. G. Frye Y. Wang A. H. Zacher US Patent 6 706 8932004. 

  37. T. A.Werpy J. G.Frye Y.Wang A. H.Zacher US Patent 6 670 483 2003. 

  38. T. A. Werpy J. G. Frye Y. Wang A. H. Zacher WO 02/102772 A1 2002. 

  39. T. A. Werpy J. G. Frye Y. Wang A. H. Zacher WO 02/102511 A1 2002. 

  40. N. Nghiemet al. Chemicals and Materials from Renewable Resources(Ed: J. J. Borell) ACS Washington2001. 

  41. W. Fischer et al. WO 2006/066839 A2 2006. 

  42. Wojcik, Bruno, Adkins, Homer. Hydrogenolysis of Succinates and Glutarates. Journal of the American Chemical Society, vol.55, no.12, 4939-4946.

  43. Varadarajan, S., Miller, D. J.. Catalytic Upgrading of Fermentation-Derived Organic Acids. Biotechnology progress, vol.15, no.5, 845-854.

  44. C. Bauduin W. Fischer R. Pinkos E. Scholten EP 1 842 843 2007. 

  45. A.Bhattacharyya M. D.Manila US Patent 2 006 004 212 A1 2006. 

  46. M. Roesch et al. WO 2005058853 A2 2005. 

  47. M. A. Wood S. P. Crabtree D. V. Tyers WO 2 005 051 875 A1 2005. 

  48. D.Campos US Patent 2 004 122 242 A1 2004. 

  49. 10.1016/S1351-4180(03)00931-0 D.Campos G. M.Sisler US Patent 6 670 490 B1 2003. 

  50. D. Ostgard M. Berweiler S. Roeder WO 2002051779 A2 2002. 

  51. Carothers, Wallace H.. Polymerization.. Chemical reviews, vol.8, no.3, 353-426.

  52. Carothers, Wallace H., Berchet, Gerard J.. STUDIES ON POLYMERIZATION AND RING FORMATION. VIII. AMIDES FROM ε-AMINOCAPROIC ACID. Journal of the American Chemical Society, vol.52, no.12, 5289-5291.

  53. 10.1002/pol.1959.1204013703 R.G. Beaman et al. J. Polym. Sci.1959 (XL) 329. 

  54. Dreyfuss, P.. Survey of the long spacing of polyamides crystallized from solution. Journal of polymer science. Polymer physics edition, vol.11, no.2, 201-216.

  55. G. Pipper E. M. Koch US Patent 5 030 709 1990. 

  56. Gaymans, R. J., Venkatraman, V. S., Schuijer, J.. Preparation and some properties of nylon‐4,2. Journal of polymer science. Polymer chemistry edition, vol.22, no.6, 1373-1382.

  57. 10.1136/bmj.2.4061.948 W. H.Carothers US Patent 2 130 948 1938. 

  58. Coffman, D. D., Berchet, G. J., Peterson, W. R., Spanagel, E. W.. Polymeric amides from diamines and dibasic acids. Journal of polymer science, vol.2, no.3, 306-313.

  59. Katsarava, Ramaz D., Kharadze, Darejan P., Avalishvili, Lamara M.. Synthesis of high‐molecular‐weight polysuccinamides by polycondensation of active succinates with diamines. Die Makromolekulare Chemie, vol.187, no.9, 2053-2062.

  60. Katsarava, R. D., Kharadze, D. P., Bendiashvili, T. M., Urman, Ya. G., Slonim, I. Ya., Alekseeva, S. G., Cefelin, P., Janout, V.. Synthesis of polyamides by active polycondensation. The structural and kinetical aspects of active esters aminolysis reactions. Acta polymerica, vol.39, no.9, 523-533.

  61. Katsarava, Ramaz. Active polycondensation: from pep tide chemistry to amino acid based biodegradable polymers. Macromolecular symposia, vol.199, no.1, 419-430.

  62. Wang, Tie-Jun, Ma, Zhao-Hui, Yan, Yuan-Yong, Huang, Mei-Yu, Jiang, Ying-Yan. Magnesium oxide-supported polytitazane cobalt(III) complex for catalytic epoxidation of ?-pinene with molecular oxygen. Polymer bulletin, vol.36, no.1, 1-5.

  63. Ahn, B. D., Kim, S. H., Kim, Y. H., Yang, J. S.. Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. Journal of applied polymer science, vol.82, no.11, 2808-2826.

  64. Ke, Bacon, Sisko, A. W.. Differential thermal analysis of high polymers. III. Polyamides. Journal of polymer science, vol.50, no.153, 87-98.

  65. Gaymans, R. J., Van Utteren, T. E. C., Van Den Berg, J. W. A., Schuyer, J.. Preparation and some properties of nylon 46. Journal of polymer science. Polymer chemistry edition, vol.15, no.3, 537-545.

  66. M. Baumann (Ed.) PolymerPlace Notes 2007 8 5.http://www.polymerplace.com/newsletters/August%2007_newsletter.pdf 

  67. Fujimaki, Takashi. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polymer degradation and stability, vol.59, no.1, 209-214.

  68. P. Drachman Developments in Biodegradable Plastics for Packaging Industry Insight IntertechPira 2007. 

  69. Lyoo, W., Kim, J., Yoon, W., Ji, B., Choi, J., Cho, J., Lee, J., Yang, S., Yoo, Y.. Effects of polymer concentration and zone drawing on the structure and properties of biodegradable poly(butylene succinate) film. Polymer, vol.41, no.26, 9055-9062.

  70. Wang, X., Zhou, J., Li, L.. Multiple melting behavior of poly(butylene succinate). European polymer journal, vol.43, no.8, 3163-3170.

  71. Xu, Yongxiang, Xu, Jun, Guo, Baohua, Xie, Xuming. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. Journal of polymer science Part B, Polymer physics, vol.45, no.4, 420-428.

  72. 10.1002/1097-4628(20010418)80:3<340::AID-APP1105>3.0.CO;2-F 

  73. Jovanovic, Danijela, Nikolic S., Marija, Djonlagic A., Jasna. Synthesis and characterization of biodegradable aliphatic copolyesters with hydrophilic soft segments. Journal of the Serbian Chemical Society, vol.69, no.12, 1013-1028.

  74. Nikolic, Marija S, Djonlagic, Jasna. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polymer degradation and stability, vol.74, no.2, 263-270.

  75. Velmathi, Sivan, Nagahata, Ritsuko, Sugiyama, Jun-ichi, Takeuchi, Kazuhiko. A Rapid Eco-Friendly Synthesis of Poly(butylene succinate) by a Direct Polyesterification under Microwave Irradiation. Macromolecular rapid communications, vol.26, no.14, 1163-1167.

  76. Zhu, Changying, Zhang, Zhiqiang, Liu, Qingping, Wang, Zhanping, Jin, Jian. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. Journal of applied polymer science, vol.90, no.4, 982-990.

  77. Bikiaris, Dimitrios N., Papageorgiou, George Z., Achilias, Dimitris S.. Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polymer degradation and stability, vol.91, no.1, 31-43.

  78. 10.1016/S0014-3057(00)00057-4 H.‐J. Jin B.‐Y. Lee M.‐N. Kim J.‐S. Yoon Eur. Polym.J.2000 36 2693. 

  79. 10.1002/(SICI)1099-0488(20000601)38:11<1504::AID-POLB100>3.0.CO;2-4 

  80. Tokiwa, Y., Suzuki, T., Ando, T.. Synthesis of copolyamide-esters and some aspects involved in their hydrolysis by lipase. Journal of applied polymer science, vol.24, no.7, 1701-1711.

  81. Grigat, E., Koch, R., Timmermann, R.. BAR 1095 and BAK 2195: completely biodegradable synthetic thermoplastics. Polymer degradation and stability, vol.59, no.1, 223-226.

  82. Abe, Hideki, Doi, Yoshiharu. Novel Biodegradable Copolymers with a Periodic Sequence Structure Derived from Succinate Butan-1,4-diol, and Butan-1,4-diamine. Macromolecular rapid communications, vol.25, no.14, 1303-1308.

  83. Jones, N. A., Atkins, E. D. T., Hill, M. J.. Comparison of Structures and Behavior on Heating of Solution-Grown, Chain-Folded Lamellar Crystals of 31 Even−Even Nylons. Macromolecules, vol.33, no.7, 2642-2650.

  84. Macromol. Res. Koning C. 1 4 1999 

  85. G. Deerberg et al. 1st International Conference on Renewable Resources And Biorefineries Ghent Belgium2005. 

  86. Liu, Xiaoqing, Li, Chuncheng, Zhang, Dong, Xiao, Yaonan. Synthesis, Characterization and Properties of Poly(butylene succinate) Reinforced by Trimellitic Imide Units. Macromolecular chemistry and physics, vol.207, no.7, 694-700.

  87. Kim, Sang-Woo, Lim, Jeong-Cheol, Kim, Dae-Jin, Seo, Kwan-Ho. Synthesis and characteristics of biodegradable copolyesters from the transesterification of poly(butylene adipate-co-succinate) and poly(ethylene terephthalate). Journal of applied polymer science, vol.92, no.5, 3266-3274.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로