$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Tin nanoparticle thin film electrodes fabricated by the vacuum filtration method for enhanced battery performance

Nanotechnology, v.20 no.23, 2009년, pp.235203 -   

Lee, Jae Hyun (National Research Laboratory for Organic Opto-Electronic Materials, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea) ,  Kong, Byung-Seon (National Research Laboratory for Organic Opto-Electronic Materials, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea) ,  Baek, Youn-Kyoung (National Research Laboratory for Organic Opto-Electronic Materials, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea) ,  Yang, Seung Bo (National Research Laboratory for Organic Opto-Electronic Materials, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea) ,  Jung, Hee-Tae (National Research Laboratory for Organic Opto-Electronic Materials, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea)

Abstract AI-Helper 아이콘AI-Helper

A novel method for fabricating tin nanoparticle thin film electrodes that show good performance in lithium ion batteries during cycling is reported. The vacuum filtration method has the advantage of affording a high degree of dispersion of the electrode components, thereby providing good electrical ...

참고문헌 (38)

  1. Guyomard, Dominique, Tarascon, Jean‐Marie. Rocking‐chair or lithium‐ion rechargeable lithium batteries. Advanced materials, vol.6, no.5, 408-412.

  2. Chen, Zonghai, Chevrier, Vincent, Christensen, L., Dahn, J. R.. Design of Amorphous Alloy Electrodes for Li-Ion Batteries. Electrochemical and solid-state letters, vol.7, no.10, A310-.

  3. Ying, Z., Wan, Q., Cao, H., Song, Z. T., Feng, S. L.. Characterization of SnO2 nanowires as an anode material for Li-ion batteries. Applied physics letters, vol.87, no.11, 113108-.

  4. Zheng, Y., Yang, J., NuLi, Y., Wang, J.. Nano-tin alloys dispersed in oxides for lithium storage materials. Journal of power sources, vol.174, no.2, 624-627.

  5. Guo, B., Shu, J., Tang, K., Bai, Y., Wang, Z., Chen, L.. Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency. Journal of power sources, vol.177, no.1, 205-210.

  6. Saint, J., Morcrette, M., Larcher, D., Laffont, L., Beattie, S., Pérès, J.-P., Talaga, D., Couzi, M., Tarascon, J.-M.. Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites. Advanced functional materials, vol.17, no.11, 1765-1774.

  7. Marcinek, M., Hardwick, L.J., Richardson, T.J., Song, X., Kostecki, R.. Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries. Journal of power sources, vol.173, no.2, 965-971.

  8. 2005 10.1088/0957-4484/16/8/029 16 1153 0957-4484 Nanotechnology Balan L 

  9. Cui, Guanglei, Hu, Yong-Sheng, Zhi, Linjie, Wu, Dongqing, Lieberwirth, Ingo, Maier, Joachim, Müllen, Klaus. A One-Step Approach Towards Carbon-Encapsulated Hollow Tin Nanoparticles and Their Application in Lithium Batteries. Small, vol.3, no.12, 2066-2069.

  10. Lee, H., Cho, J.. Sn78Ge22@Carbon Core−Shell Nanowires as Fast and High-Capacity Lithium Storage Media. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.7, no.9, 2638-2641.

  11. Deng, Da, Lee, Jim Yang. Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage. Chemistry of materials : a publication of the American Chemical Society, vol.20, no.5, 1841-1846.

  12. 2008 10.1088/0957-4484/19/36/365306 19 365306 0957-4484 Nanotechnology Chen X 

  13. Bruce, Peter G., Scrosati, Bruno, Tarascon, Jean-Marie. Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie. international edition, vol.47, no.16, 2930-2946.

  14. 2007 10.1088/0957-4484/18/29/295705 18 295705 0957-4484 Nanotechnology Arrebola J C 

  15. Aricò, Antonino Salvatore, Bruce, Peter, Scrosati, Bruno, Tarascon, Jean-Marie, van Schalkwijk, Walter. Nanostructured materials for advanced energy conversion and storage devices. Nature materials, vol.4, no.5, 366-377.

  16. Ryu, Ji Heon, Kim, Jae Woo, Sung, Yung-Eun, Oh, Seung M.. Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochemical and solid-state letters, vol.7, no.10, A306-.

  17. Wolfenstine, J.. Critical grain size for microcracking during lithium insertion. Journal of power sources, vol.79, no.1, 111-113.

  18. Kim, Y., Hwang, H., Yoon, C. S., Kim, M. G., Cho, J.. Reversible Lithium Intercalation in Teardrop-Shaped Ultrafine SnP0.94 Particles: An Anode Material for Lithium-Ion Batteries. Advanced materials, vol.19, no.1, 92-96.

  19. Hassoun, J., Panero, S., Simon, P., Taberna, P. L., Scrosati, B.. High-Rate, Long-Life Ni–Sn Nanostructured Electrodes for Lithium-Ion Batteries. Advanced materials, vol.19, no.12, 1632-1635.

  20. Derrien, G., Hassoun, J., Panero, S., Scrosati, B.. Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Advanced materials, vol.19, no.17, 2336-2340.

  21. Takamura, Tsutomu, Ohara, Shigeki, Uehara, Makiko, Suzuki, Junji, Sekine, Kyoichi. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. Journal of power sources, vol.129, no.1, 96-100.

  22. Hatchard, T. D., Dahn, J. R.. Study of the Electrochemical Performance of Sputtered Si[sub 1−x]Sn[sub x] Films. Journal of the Electrochemical Society : JES, vol.151, no.10, A1628-.

  23. Kim, Young-Lae, Lee, Heon-Young, Jang, Serk-Won, Lee, Seung-Joo, Baik, Hong-Koo, Yoon, Young-Soo, Park, Young-Shin, Lee, Sung-Man. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries. Solid state ionics, vol.160, no.3, 235-240.

  24. 2007 10.1088/0957-4484/18/43/435707 18 435707 0957-4484 Nanotechnology An G 

  25. Simonin, L., Lafont, U., Kelder, E.M.. SnSb micron-sized particles for Li-ion batteries. Journal of power sources, vol.180, no.2, 859-863.

  26. Jung, Yoon Seok, Lee, Kyu T., Ryu, Ji Heon, Im, Dongmin, Oh, Seung M.. Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries. Journal of the Electrochemical Society : JES, vol.152, no.7, A1452-.

  27. Zhang, T., Fu, L.J., Gao, J., Wu, Y.P., Holze, R., Wu, H.Q.. Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery. Journal of power sources, vol.174, no.2, 770-773.

  28. Zhang, Wei-Ming, Hu, Jin-Song, Guo, Yu-Guo, Zheng, Shu-Fa, Zhong, Liang-Shu, Song, Wei-Guo, Wan, Li-Jun. Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced materials, vol.20, no.6, 1160-1165.

  29. Yang, J., Takeda, Y., Imanishi, N., Yamamoto, O.. Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries. Journal of the Electrochemical Society : JES, vol.146, no.11, 4009-4013.

  30. Yang, Jun. Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries. Electrochemical and solid-state letters, vol.2, no.4, 161-.

  31. Armitage, N. P., Gabriel, J.-C. P., Grüner, G.. Quasi-Langmuir-Blodgett thin film deposition of carbon nanotubes. Journal of applied physics, vol.95, no.6, 3228-3230.

  32. Wu, Zhuangchun, Chen, Zhihong, Du, Xu, Logan, Jonathan M., Sippel, Jennifer, Nikolou, Maria, Kamaras, Katalin, Reynolds, John R., Tanner, David B., Hebard, Arthur F., Rinzler, Andrew G.. Transparent, Conductive Carbon Nanotube Films. Science, vol.305, no.5688, 1273-1277.

  33. Kong, B.-S., Jung, D.-H., Oh, S.-K., Han, C.-S., Jung, H.-T.. Single-Walled Carbon Nanotube Gold Nanohybrids: Application in Highly Effective Transparent and Conductive Films. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.111, no.23, 8377-8382.

  34. 1994 15 Inorganic Materials Chemistry Weller M T 

  35. Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J., Dahn, J. R.. Colossal Reversible Volume Changes in Lithium Alloys. Electrochemical and solid-state letters, vol.4, no.9, A137-.

  36. 2004 1 Lithium-Ion Batteries: Solid-Electrolyte Interphase Balbuena P B 

  37. 1999 2469 Binary Alloy Phase Diagrams Massalski T B 

  38. Courtney, Ian A., McKinnon, W. R., Dahn, J. R.. On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. Journal of the Electrochemical Society : JES, vol.146, no.1, 59-68.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로