$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

An Anti-Transforming Growth Factor β Antibody Suppresses Metastasis via Cooperative Effects on Multiple Cell Compartments 원문보기

Cancer research : the official organ of the American Association for Cancer Research, Inc, v.68 no.10, 2008년, pp.3835 - 3843  

Nam, Jeong-Seok (1Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea) ,  Terabe, Masaki ,  Mamura, Mizuko (3Vaccine Branch and) ,  Kang, Mi-Jin (1Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea) ,  Chae, Helen ,  Stuelten, Christina (2Laboratory of Cancer Biology and Genetics) ,  Kohn, Ethan ,  Tang, Binwu (2Laboratory of Cancer Biology and Genetics) ,  Sabzevari, Helen ,  Anver, Miriam R. (2Laboratory of Cancer Biology and Genetics) ,  Lawrence, Scott ,  Danielpour, David (2Laboratory of Cancer Biology and Genetics) ,  Lonning, Scott ,  Berzofsky, Jay A. (2Laboratory of Cancer Biology and Genetics) ,  Wakefield, Lalage M.

Abstract AI-Helper 아이콘AI-Helper

AbstractOverexpression of transforming growth factor β (TGF-β) is frequently associated with metastasis and poor prognosis, and TGF-β antagonism has been shown to prevent metastasis in preclinical models with surprisingly little toxicity. Here, we have used the transplantable 4T1 mode...

참고문헌 (48)

  1. 10.1016/j.bbcan.2006.06.004 Pardali K, Moustakas A. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 2007; 1775: 21-62. 

  2. 10.1038/ng1001-117 Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117-29. 

  3. Gold LI. The role for transforming growth factor-β (TGF-β) in human cancer. Crit Rev Oncog 1999; 10: 303-60. 

  4. 10.1158/1078-0432.CCR-07-1654 Teicher BA. Transforming growth factor-β and the immune response to malignant disease. Clin Cancer Res 2007; 13: 6247-51. 

  5. 10.1038/nrc1926 Bierie B, Moses HL. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506-20. 

  6. 10.1016/j.cytogfr.2005.09.008 Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 2006; 17: 19-27. 

  7. 10.1146/annurev.immunol.24.021605.090737 Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 2006; 24: 99-146. 

  8. 10.1126/science.1090922 Bhowmick NA, Chytil A, Plieth D, et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848-51. 

  9. 10.1038/nature04846 Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 2006; 441: 1015-9. 

  10. 10.1172/JCI200215333 Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002; 109: 1607-15. 

  11. 10.1172/JCI0215234 Muraoka RS, Dumont N, Ritter CA, et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002; 109: 1551-9. 

  12. 10.1084/jem.20022227 Terabe M, Matsui S, Park JM, et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003; 198: 1741-52. 

  13. 10.2174/156800906778742460 Saunier EF, Akhurst RJ. TGF β inhibition for cancer therapy. Curr Cancer Drug Targets 2006; 6: 565-78. 

  14. 10.1038/nrd1580 Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004; 3: 1011-22. 

  15. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399-405. 

  16. 10.1081/IPH-120020473 Ruzek MC, Hawes M, Pratt B, et al. Minimal effects on immune parameters following chronic anti-TGF-β monoclonal antibody administration to normal mice. Immunopharmacol Immunotoxicol 2003; 25: 235-57. 

  17. 10.1158/0008-5472.CAN-06-0068 Nam JS, Suchar AM, Kang MJ, et al. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor β in a mouse model of breast cancer. Cancer Res 2006; 66: 6327-35. 

  18. 10.4049/jimmunol.142.5.1536 Dasch JR, Pace DR, Waegell W, Inenaga D, Ellingsworth L. Monoclonal antibodies recognizing transforming growth factor-β. Bioactivity neutralization and transforming growth factor β2 affinity purification. J Immunol 1989; 142: 1536-41. 

  19. 10.1016/0022-1759(94)00322-N Danielpour D, Roberts AB. Specific and sensitive quantitation of transforming growth factor β3 by sandwich enzyme-linked immunosorbent assay. J Immunol Methods 1995; 180: 265-72. 

  20. 10.1096/fasebj.11.12.9337152 Ehrhart EJ, Segarini P, Tsang ML, Carroll AG, Barcellos-Hoff MH. Latent transforming growth factor β1 activation in situ: quantitative and functional evidence after low-dose γ-irradiation. FASEB J 1997; 11: 991-1002. 

  21. Wakefield LM, Letterio JJ, Chen T, et al. Transforming growth factor-β1 circulates in normal human plasma and is unchanged in advanced metastatic breast cancer. Clin Cancer Res 1995; 1: 129-36. 

  22. 10.3892/or.5.2.485 Sminia P, Barten AD, van Waarde MA, Vujaskovic Z, van Tienhoven G. Plasma transforming growth factor β levels in breast cancer patients. Oncol Rep 1998; 5: 485-8. 

  23. 10.1073/pnas.0932636100 Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A 2003; 100: 8430-5. 

  24. Bandyopadhyay A, Lopez-Casillas F, Malik SN, et al. Antitumor activity of a recombinant soluble β-glycan in human breast cancer xenograft. Cancer Res 2002; 62: 4690-5. 

  25. 10.1172/JCI116871 Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT. Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. J Clin Invest 1993; 92: 2569-76. 

  26. 10.1158/0008-5472.CAN-04-1013 Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 2004; 64: 7954-61. 

  27. 10.1158/1078-0432.CCR-06-0162 Ge R, Rajeev V, Ray P, et al. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-β type I receptor kinase in vivo. Clin Cancer Res 2006; 12: 4315-30. 

  28. 10.1158/1078-0432.CCR-03-0611 Suzuki E, Kapoor V, Cheung HK, et al. Soluble type II transforming growth factor-β receptor inhibits established murine malignant mesothelioma tumor growth by augmenting host antitumor immunity. Clin Cancer Res 2004; 10: 5907-18. 

  29. 10.1158/0008-5472.CAN-06-2389 Suzuki E, Kim S, Cheung HK, et al. A novel small-molecule inhibitor of transforming growth factor β type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res 2007; 67: 2351-9. 

  30. 10.1158/1078-0432.CCR-07-1157 Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res 2007; 13: 5262-70. 

  31. 10.4049/jimmunol.172.12.7335 Lee JC, Lee KM, Kim DW, Heo DS. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 2004; 172: 7335-40. 

  32. 10.1073/pnas.90.21.9944 Geiser AG, Letterio JJ, Kulkarni AB, Karlsson S, Roberts AB, Sporn MB. Transforming growth factor β1 (TGF-β1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-β1 null mouse phenotype. Proc Natl Acad Sci U S A 1993; 90: 9944-8. 

  33. 10.1038/nri1199 Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003; 3: 781-90. 

  34. 10.1158/0008-5472.CAN-04-1627 Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforming growth factor-β enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 2004; 64: 7596-603. 

  35. 10.1016/j.cytogfr.2004.11.002 Sanchez-Capelo A. Dual role for TGF-β1 in apoptosis. Cytokine Growth Factor Rev 2005; 16: 15-34. 

  36. Won J, Kim H, Park EJ, Hong Y, Kim SJ, Yun Y. Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor β receptor therapy. Cancer Res 1999; 59: 1273-7. 

  37. 10.1007/BF02700021 Witham TF, Villa L, Yang T, et al. Expression of a soluble transforming growth factor-β (TGFβ) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcoma in vivo. J Neurooncol 2003; 64: 63-9. 

  38. 10.4049/jimmunol.178.5.2883 Liu VC, Wong LY, Jang T, et al. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J Immunol 2007; 178: 2883-92. 

  39. 10.1038/nm1001-1118 Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med 2001; 7: 1118-22. 

  40. 10.1158/0008-5472.CAN-04-3169 Zhang Q, Yang X, Pins M, et al. Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res 2005; 65: 1761-9. 

  41. 10.4049/jimmunol.169.7.3485 Shah AH, Tabayoyong WB, Kimm SY, Kim SJ, Van Parijs L, Lee C. Reconstitution of lethally irradiated adult mice with dominant negative TGF-β type II receptor-transduced bone marrow leads to myeloid expansion and inflammatory disease. J Immunol 2002; 169: 3485-91. 

  42. 10.1158/1535-7163.MCT-06-0109 Zhang Q, Yang XJ, Kundu SD, et al. Blockade of transforming growth factor-β signaling in tumor-reactive CD8(+) T cells activates the antitumor immune response cycle. Mol Cancer Ther 2006; 5: 1733-43. 

  43. 10.1016/S1074-7613(00)80170-3 Gorelik L, Flavell RA. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171-81. 

  44. 10.1073/pnas.90.2.770 Kulkarni AB, Huh CG, Becker D, et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 1993; 90: 770-4. 

  45. 10.1158/0008-5472.CAN-08-0206 Nam JS, Terabe M, Kang M-J, et al. Transforming growth factor β subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res 2008; 68: 3915-23. 

  46. 10.1007/s11373-007-9201-3 Li J, Dong X, Xu Z, et al. Endostatin gene therapy enhances the efficacy of paclitaxel to suppress breast cancers and metastases in mice. J Biomed Sci 2008; 15: 99-105. 

  47. 10.1073/pnas.0611660104 Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc Natl Acad Sci U S A 2007; 104: 3460-5. 

  48. 10.1126/science.1139158 Putnam NH, Srivastava M, Hellsten U, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007; 317: 86-94. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로