$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Batch-processed carbon nanotube wall as pressure and flow sensor

Nanotechnology, v.21 no.10, 2010년, pp.105502 -   

Choi, Jungwook (Author to whom any correspondence should be addressed) ,  Kim, Jongbaeg

Abstract AI-Helper 아이콘AI-Helper

A pressure and flow sensor based on the electrothermal-thermistor effect of a batch-processed carbon nanotube wall (CNT wall) is presented. The negative temperature coefficient of resistance (TCR) of CNTs and the temperature dependent tunneling rate through the CNT/silicon junction enable vacuum pre...

참고문헌 (55)

  1. Craighead, H. G.. Nanoelectromechanical Systems. Science, vol.290, no.5496, 1532-1535.

  2. Ekinci, K. L., Roukes, M. L.. Nanoelectromechanical systems. Review of scientific instruments, vol.76, no.6, 061101-.

  3. Jang, J. E., Cha, S. N., Choi, Y., Amaratunga, Gehan A. J., Kang, D. J., Hasko, D. G., Jung, J. E., Kim, J. M.. Nanoelectromechanical switches with vertically aligned carbon nanotubes. Applied physics letters, vol.87, no.16, 163114-.

  4. Lee, S. W., Lee, D. S., Morjan, R. E., Jhang, S. H., Sveningsson, M., Nerushev, O. A., Park, Y. W., Campbell, E. E. B.. A Three-Terminal Carbon Nanorelay. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.4, no.10, 2027-2030.

  5. Hierold, C., Jungen, A., Stampfer, C., Helbling, T.. Nano electromechanical sensors based on carbon nanotubes. Sensors and actuators. A, Physical, vol.136, no.1, 51-61.

  6. Baughman, Ray H., Zakhidov, Anvar A., de Heer, Walt A.. Carbon Nanotubes--the Route Toward Applications. Science, vol.297, no.5582, 787-792.

  7. 2001 Carbon Nanotubes Synthesis, Structure, Properties, and Applications Dresselhaus M S 

  8. Grow, Randal J., Wang, Qian, Cao, Jien, Wang, Dunwei, Dai, Hongjie. Piezoresistance of carbon nanotubes on deformable thin-film membranes. Applied physics letters, vol.86, no.9, 093104-.

  9. Nishio, Mitsumasa, Sawaya, Shintaro, Akita, Seiji, Nakayama, Yoshikazu. Carbon nanotube oscillators toward zeptogram detection. Applied physics letters, vol.86, no.13, 133111-.

  10. Sazonova, Vera, Yaish, Yuval, Üstünel, Hande, Roundy, David, Arias, Tomás A., McEuen, Paul L.. A tunable carbon nanotube electromechanical oscillator. Nature, vol.431, no.7006, 284-287.

  11. Stampfer, C., Jungen, A., Linderman, R., Obergfell, D., Roth, S., Hierold, C.. Nano-Electromechanical Displacement Sensing Based on Single-Walled Carbon Nanotubes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.6, no.7, 1449-1453.

  12. Stampfer, C., Jungen, A., Hierold, C.. Fabrication of discrete nanoscaled force sensors based on single-walled carbon nanotubes. IEEE sensors journal, vol.6, no.3, 613-617.

  13. Stampfer, C., Helbling, T., Obergfell, D., Schoberle, B., Tripp, M. K., Jungen, A., Roth, S., Bright, V. M., Hierold, C.. Fabrication of Single-Walled Carbon-Nanotube-Based Pressure Sensors. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.6, no.2, 233-237.

  14. 2004 10.1088/0957-4484/15/11/021 15 1493 0957-4484 Nanotechnology Li C-Y 

  15. Ghosh, Shankar, Sood, A. K., Kumar, N.. Carbon Nanotube Flow Sensors. Science, vol.299, no.5609, 1042-1044.

  16. Kong, Jing, Franklin, Nathan R., Zhou, Chongwu, Chapline, Michael G., Peng, Shu, Cho, Kyeongjae, Dai, Hongjie. Nanotube Molecular Wires as Chemical Sensors. Science, vol.287, no.5453, 622-625.

  17. 2009 10.1088/0957-4484/20/5/055503 20 055503 0957-4484 Nanotechnology Yun J-H 

  18. Collins, Philip G., Bradley, Keith, Ishigami, Masa, Zettl, A.. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science, vol.287, no.5459, 1801-1804.

  19. Helbling, T., Pohle, R., Durrer, L., Stampfer, C., Roman, C., Jungen, A., Fleischer, M., Hierold, C.. Sensing NO2 with individual suspended single-walled carbon nanotubes. Sensors and actuators. B, Chemical, vol.132, no.2, 491-497.

  20. Banerjee, I. A., Yu, L., Matsui, H.. Location-Specific Biological Functionalization on Nanotubes: Attachment of Proteins at the Ends of Nanotubes Using Au Nanocrystal Masks. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.3, no.3, 283-287.

  21. Star, A., Gabriel, J.-C. P., Bradley, K., Gruner, G.. Electronic Detection of Specific Protein Binding Using Nanotube FET Devices. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.3, no.4, 459-463.

  22. Modi, Ashish, Koratkar, Nikhil, Lass, Eric, Wei, Bingqing, Ajayan, Pulickel M.. Miniaturized gas ionization sensors using carbon nanotubes. Nature, vol.424, no.6945, 171-174.

  23. Fung, C.K.M., Wong, V.T.S., Chan, R.H.M., Li, W.J.. Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors. IEEE transactions on nanotechnology, vol.3, no.3, 395-403.

  24. Di Bartolomeo, A., Sarno, M., Giubileo, F., Altavilla, C., Iemmo, L., Piano, S., Bobba, F., Longobardi, M., Scarfato, A., Sannino, D., Cucolo, A. M., Ciambelli, P.. Multiwalled carbon nanotube films as small-sized temperature sensors. Journal of applied physics, vol.105, no.6, 064518-.

  25. Cantalini, C., Valentini, L., Lozzi, L., Armentano, I., Kenny, J.M., Santucci, S.. NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sensors and actuators. B, Chemical, vol.93, no.1, 333-337.

  26. 2009 10.1088/0957-4484/20/5/055501 20 055501 0957-4484 Nanotechnology Rao F 

  27. Chen, Jia, Perebeinos, Vasili, Freitag, Marcus, Tsang, James, Fu, Qiang, Liu, Jie, Avouris, Phaedon. Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes. Science, vol.310, no.5751, 1171-1174.

  28. Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., Thio, T.. Electrical conductivity of individual carbon nanotubes. Nature, vol.382, no.6586, 54-56.

  29. Kuo, Cheng Yung, Chan, Chia Lang, Gau, Chie, Liu, Chien-Wei, Shiau, Shiuan Hua, Ting, Jyh-Hua. Nano Temperature Sensor Using Selective Lateral Growth of Carbon Nanotube Between Electrodes. IEEE transactions on nanotechnology, vol.6, no.1, 63-69.

  30. Li, Jingqi, Zhang, Qing, Peng, Ning, Zhu, Qi. Manipulation of carbon nanotubes using AC dielectrophoresis. Applied physics letters, vol.86, no.15, 153116-.

  31. Li, Jingqi, Zhang, Qing, Yang, Dajiang, Tian, Jingze. Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method. Carbon, vol.42, no.11, 2263-2267.

  32. Franklin, Nathan R., Wang, Qian, Tombler, Thomas W., Javey, Ali, Shim, Moonsub, Dai, Hongjie. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Applied physics letters, vol.81, no.5, 913-915.

  33. Zhang, Yuegang, Chang, Aileen, Cao, Jien, Wang, Qian, Kim, Woong, Li, Yiming, Morris, Nathan, Yenilmez, Erhan, Kong, Jing, Dai, Hongjie. Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied physics letters, vol.79, no.19, 3155-3157.

  34. 2009 10.1088/0957-4484/20/2/025601 20 025601 0957-4484 Nanotechnology Xiong W 

  35. Englander, Ongi, Christensen, Dane, Lin, Liwei. Local synthesis of silicon nanowires and carbon nanotubes on microbridges. Applied physics letters, vol.82, no.26, 4797-4799.

  36. Kawano, Takeshi, Christensen, Dane, Chen, Supin, Cho, Chung Yeung, Lin, Liwei. Formation and characterization of silicon/carbon nanotube/silicon heterojunctions by local synthesis and assembly. Applied physics letters, vol.89, no.16, 163510-.

  37. Li, De-Chang, Dai, Liming, Huang, Shaoming, Mau, Albert W.H., Wang, Zhong L.. Structure and growth of aligned carbon nanotube films by pyrolysis. Chemical physics letters, vol.316, no.5, 349-355.

  38. Naeemi, Azad, Meindl, James D.. Physical Modeling of Temperature Coefficient of Resistance for Single- and Multi-Wall Carbon Nanotube Interconnects. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.28, no.2, 135-138.

  39. 2004 10.1088/0957-4484/15/10/028 15 S672 0957-4484 Nanotechnology Chan R H M 

  40. 1999 Properties of Crystalline Silicon Chaparala M V 

  41. 10.1002/0470068329 

  42. Gao, Ruiping, Pan, Zhengwei, Wang, Zhong L.. Work function at the tips of multiwalled carbon nanotubes. Applied physics letters, vol.78, no.12, 1757-1759.

  43. Ng, K.K., Liu, R.. On the calculation of specific contact resistivity on. IEEE transactions on electron devices, vol.37, no.6, 1535-1537.

  44. Dong, Lifeng, Youkey, Steven, Bush, Jocelyn, Jiao, Jun, Dubin, Valery M., Chebiam, Ramanan V.. Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. Journal of applied physics, vol.101, no.2, 024320-.

  45. Li, Yan-Hui, Wei, Jinquan, Zhang, Xianfeng, Xu, Cailu, Wu, Dehai, Lu, Li, Wei, Bingqing. Mechanical and electrical properties of carbon nanotube ribbons. Chemical physics letters, vol.365, no.1, 95-100.

  46. 1976 Vacuum Technology Roth A 

  47. Kaul, A.B., Manohara, H.M.. Carbon Nanotube Vacuum Gauges With Wide Dynamic Range. IEEE transactions on nanotechnology, vol.8, no.2, 252-257.

  48. Yi, W., Lu, L., Dian-lin, Zhang, Pan, Z. W., Xie, S. S.. Linear specific heat of carbon nanotubes. Physical review. B, Condensed matter and materials physics, vol.59, no.14, R9015-R9018.

  49. Kawano, T., Chiamori, H. C., Suter, M., Zhou, Q., Sosnowchik, B. D., Lin, L.. An Electrothermal Carbon Nanotube Gas Sensor. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.7, no.12, 3686-3690.

  50. Zhang, F.T., Tang, Z., Yu, J., Jin, R.C.. A micro-Pirani vacuum gauge based on micro-hotplate technology. Sensors and actuators. A, Physical, vol.126, no.2, 300-305.

  51. 2009 10.1088/0960-1317/19/4/045007 19 045007 J. Micromech. Micoeng. Khosraviani K 

  52. 2009 10.1088/0957-4484/20/15/155501 20 155501 0957-4484 Nanotechnology Kaul A B 

  53. 1961 Principles of Vacuum Engineering Pirani M 

  54. Ashauer, M., Glosch, H., Hedrich, F., Hey, N., Sandmaier, H., Lang, W.. Thermal flow sensor for liquids and gases based on combinations of two principles. Sensors and actuators. A, Physical, vol.73, no.1, 7-13.

  55. Wu, Shuyun, Lin, Qiao, Yuen, Yin, Tai, Yu-Chong. MEMS flow sensors for nano-fluidic applications. Sensors and actuators. A, Physical, vol.89, no.1, 152-158.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로