$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A New Class of Charge-Trap Flash Memory With Resistive Switching Mechanisms

IEEE transactions on electron devices, v.57 no.10, 2010년, pp.2398 - 2404  

Ho-Myoung An (Sch. of Electr. Eng., Korea Univ., Seoul, South Korea) ,  Eui Bok Lee (Sch. of Electr. Eng., Korea Univ., Seoul, South Korea) ,  Hee-Dong Kim (Sch. of Electr. Eng., Korea Univ., Seoul, South Korea) ,  Yu Jeong Seo (Sch. of Electr. Eng., Korea Univ., Seoul, South Korea) ,  Tae Geun Kim (Sch. of Electr. Eng., Korea Univ., Seoul, South Korea)

Abstract AI-Helper 아이콘AI-Helper

This paper presents a new class of charge-trap Flash memory device with resistive switching mechanisms. We propose a fused memory scheme using a structure of metal/Pr0.7Ca0.3MnO3 (PCMO)/nitride/oxide/silicon to graft fast-switching features of resistive random access memory onto high-density silicon...

참고문헌 (44)

  1. Wrazien, Stephen J., Wang, Yu, Khan, Bilal M., White, Marvin H.. Characterizing damage to ONO dielectrics induced during programming SONOS/NROMTM non-volatile semiconductor memory (NVSM) devices. Solid-state electronics, vol.48, no.10, 2035-2039.

  2. A low voltage SANOS nonvolatile semiconductor memory (NVSM) device. Solid-state electronics, vol.50, no.9, 1667-1669.

  3. Teo, L. W., Choi, W. K., Chim, W. K., Ho, V., Moey, C. M., Tay, M. S., Heng, C. L., Lei, Y., Antoniadis, D. A., Fitzgerald, E. A.. Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure. Applied physics letters, vol.81, no.19, 3639-3641.

  4. Tseng, Jiun-Yi, Cheng, Cheng-Wei, Wang, Sheng-Yu, Wu, Tai-Bor, Hsieh, Kuang-Yeu, Liu, Rich. Memory characteristics of Pt nanocrystals self-assembledfrom reduction of an embedded PtOx ultrathin film in metal-oxide-semiconductor structures. Applied physics letters, vol.85, no.13, 2595-2597.

  5. Chan, M.Y., Zhang, T., Ho, V., Lee, P.S.. Resistive switching effects of HfO2 high-k dielectric. Microelectronic engineering, vol.85, no.12, 2420-2424.

  6. Appl Phys A Solids Surf ‘Positive’ and ‘negative’ electric-pulse-induced reversible resistance switching effect in $\hbox{Pr}_{0.7}\hbox{Ca}_{0.3}\hbox{MnO}_{3}$ films wang 2007 10.1007/s00339-006-3769-8 86 357 

  7. Nonvolatile Memory Technologies With Emphasis on Flash brewer 2008 1 

  8. Eitan, B., Pavan, P., Bloom, I., Aloni, E., Frommer, A., Finzi, D.. NROM: A novel localized trapping, 2-bit nonvolatile memory cell. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.21, no.11, 543-545.

  9. Chen, Tung-Sheng, Wu, Kuo-Hong, Chung, Hsien, Kao, Chin-Hsing. Performance improvement of SONOS memory by bandgap engineering of charge-trapping layer. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.25, no.4, 205-207.

  10. Normand, P., Kapetanakis, E., Dimitrakis, P., Tsoukalas, D., Beltsios, K., Cherkashin, N., Bonafos, C., Benassayag, G., Coffin, H., Claverie, A., Soncini, V., Agarwal, A., Ameen, M.. Effect of annealing environment on the memory properties of thin oxides with embedded Si nanocrystals obtained by low-energy ion-beam synthesis. Applied physics letters, vol.83, no.1, 168-170.

  11. Han, Jin-Woo, Ryu, Seong-Wan, Kim, Sungho, Kim, Chung-Jin, Ahn, Jae-Hyuk, Choi, Sung-Jin, Kim, Jin Soo, Kim, Kwang Hee, Lee, Gi Sung, Oh, Jae Sub, Song, Myeong Ho, Park, Yun Chang, Kim, Jeoung Woo, Choi, Yang-Kyu. A Bulk FinFET Unified-RAM (URAM) Cell for Multifunctioning NVM and Capacitorless 1T-DRAM. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.29, no.6, 632-634.

  12. Appl Phys Express Effect of electron injection at the Pt-interface on a bipolar resistance switching device with Ta/ $\hbox{Pr}_{0.7}\hbox{Ca}_{0.3}\hbox{MnO}_{3}$ /Pt structure shono 2009 10.1143/APEX.2.071401 2 71401-1 

  13. 10.1109/IEDM.2008.4796828 

  14. Åkerman, Johan. Toward a Universal Memory. Science, vol.308, no.5721, 508-510.

  15. Lee, Se-Ho, Jung, Yeonwoong, Agarwal, Ritesh. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nature nanotechnology, vol.2, no.10, 626-630.

  16. Jo, S. H., Lu, W.. CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.8, no.2, 392-397.

  17. Stolichnov, I., Riester, S. W. E., Trodahl, H. J., Setter, N., Rushforth, A. W., Edmonds, K. W., Campion, R. P., Foxon, C. T., Gallagher, B. L., Jungwirth, T.. Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. Nature materials, vol.7, no.6, 464-467.

  18. Science spintronics: a spin-based electronics vision for the future wolf 2001 10.1126/science.1065389 294 1488 

  19. Sankey, Jack C., Cui, Yong-Tao, Sun, Jonathan Z., Slonczewski, John C., Buhrman, Robert A., Ralph, Daniel C.. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nature physics, vol.4, no.1, 67-71.

  20. Scott, J. F.. Data storage: Multiferroic memories. Nature materials, vol.6, no.4, 256-257.

  21. Lin, Chun-Chieh, Lin, Chih-Yang, Lin, Meng-Han, Lin, Chen-Hsi, Tseng, Tseung-Yuen. Voltage-Polarity-Independent and High-Speed Resistive Switching Properties of V-Doped $\hbox{SrZrO}_{3}$ Thin Films. IEEE transactions on electron devices, vol.54, no.12, 3146-3151.

  22. Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.. Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface. Applied physics letters, vol.85, no.18, 4073-4075.

  23. Seo, Y. J., Kim, K. C., Kim, T. G., Sung, Y. M., Cho, H. Y., Joo, M. S., Pyi, S. H.. Analysis of electronic memory traps in the oxide-nitride-oxide structure of a polysilicon-oxide-nitride-oxide-semiconductor flash memory. Applied physics letters, vol.92, no.13, 132104-.

  24. Bu, Jiankang, White, Marvin H. Design considerations in scaled SONOS nonvolatile memory devices. Solid-state electronics, vol.45, no.1, 113-120.

  25. Wu, Kuo-Hong, Chien, Hua-Ching, Chan, Chih-Chiang, Chen, Tung-Sheng, Kao, Chin-Hsing. SONOS device with tapered bandgap nitride layer. IEEE transactions on electron devices, vol.52, no.5, 987-992.

  26. IEEE Trans Electron Devices a novel monos nonvolatile memory device ensuring 10-year data retention after $ \hbox{10}^{7}$ erase/write cycles minami 1993 10.1109/16.239742 40 2011 

  27. Appl Phys Lett Localized switching mechanism in resistive switching of atomic-layer-deposited $ \hbox{TiO}_{2}$ thin films kim 2007 10.1063/1.2748312 90 242906 

  28. Appl Phys Lett Correlation between charge trap distribution and memory characteristics in metal/oxide/nitride/oxide/silicon devices with two different blocking oxides, $\hbox{Al}_{2} \hbox{O}_{3}$ and $\hbox{SiO}_{2}$ seo 2008 10.1063/1.2970990 93 63508 

  29. 10.1109/VLSIT.2007.4339759 

  30. Appl Phys Lett Charge-trapping device structure of $\hbox{SiO}_{2}$ /SiN/high- $k$ dielectric $\hbox{Al}_{2}\hbox{O}_{3}$ for high-density Flash memory lee 2005 10.1063/1.1897431 86 152908 

  31. 10.1109/101.857747 

  32. 10.1109/IEDM.2005.1609402 

  33. Lee, Jang-Sik, Cho, Jinhan, Lee, Chiyoung, Kim, Inpyo, Park, Jeongju, Kim, Yong-Mu, Shin, Hyunjung, Lee, Jaegab, Caruso, Frank. Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nature nanotechnology, vol.2, no.12, 790-795.

  34. Kim, D. S., Kim, Y. H., Lee, C. E., Kim, Y. T.. Colossal electroresistance mechanism in aAu∕Pr0.7Ca0.3MnO3∕Ptsandwich structure: Evidence for a Mott transition. Physical review. B, Condensed matter and materials physics, vol.74, no.17, 174430-.

  35. Burr, G. W., Kurdi, B. N., Scott, J. C., Lam, C. H., Gopalakrishnan, K., Shenoy, R. S.. Overview of candidate device technologies for storage-class memory. IBM journal of research and development, vol.52, no.4, 449-464.

  36. Sawa, A.. Resistive switching in transition metal oxides. Materials today, vol.11, no.6, 28-36.

  37. IEICE Trans Electron mnos nonvolatile semiconductor memory technology: present and future kamigaki 2001 e84 c 713 

  38. Peng, W. C., Lin, J. G., Wu, J. H.. Enhanced colossal electroresistance in Cu/Pr0.7Ca0.3MnO3/Cu structure. Journal of applied physics, vol.100, no.9, 093704-.

  39. Minami, S., Kamigaki, Y.. New scaling guidelines for MNOS nonvolatile memory devices. IEEE transactions on electron devices, vol.38, no.11, 2519-2526.

  40. Odagawa, A., Sato, H., Inoue, I. H., Akoh, H., Kawasaki, M., Tokura, Y., Kanno, T., Adachi, H.. Colossal electroresistance of aPr0.7Ca0.3MnO3thin film at room temperature. Physical review. B, Condensed matter and materials physics, vol.70, no.22, 224403-.

  41. Witters, J.S., Groeseneken, G., Maes, H.E.. Degradation of tunnel-oxide floating-gate EEPROM devices and the correlation with high field-current-induced degradation of thin gate oxides. IEEE transactions on electron devices, vol.36, no.9, 1663-1682.

  42. Wang, Gan, White, Marvin H.. Characterization of scaled MANOS nonvolatile semiconductor memory (NVSM) devices. Solid-state electronics, vol.52, no.10, 1491-1497.

  43. Kamigaki, Y., Minami, S.-I., Hagiwara, T., Furusawa, K., Furuno, T., Uchida, K., Terasawa, M., Yamazaki, K.. Yield and reliability of MNOS EEPROM products. IEEE journal of solid-state circuits, vol.24, no.6, 1714-1722.

  44. Jooss, Ch., Hoffmann, J., Fladerer, J., Ehrhardt, M., Beetz, T., Wu, L., Zhu, Y.. Electric pulse induced resistance change effect in manganites due to polaron localization at the metal-oxide interfacial region. Physical review. B, Condensed matter and materials physics, vol.77, no.13, 132409-.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로