$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling

Nature protocols, v.6 no.4, 2011년, pp.468 - 481  

Gu, Hongcang (Broad Institute, Cambridge, Massachusetts, USA.) ,  Smith, Zachary D (1] Broad Institute, Cambridge, Massachusetts, USA. [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [3] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.) ,  Bock, Christoph (1] Broad Institute, Cambridge, Massachusetts, USA. [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [3] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [4] Max Planck Institute for Informatics, Saarbr체cken, Germany.) ,  Boyle, Patrick (Broad Institute, Cambridge, Massachusetts, USA.) ,  Gnirke, Andreas (Broad Institute, Cambridge, Massachusetts, USA.) ,  Meissner, Alexander (1] Broad Institute, Cambridge, Massachusetts, USA. [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [3] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.)

Abstract AI-Helper 아이콘AI-Helper

Genome-wide mapping of 5-methylcytosine is of broad interest to many fields of biology and medicine. A variety of methods have been developed, and several have recently been advanced to genome-wide scale using arrays and next-generation sequencing approaches. We have previously reported reduced repr...

참고문헌 (31)

  1. Genes Dev. A Bird 16 6 2002 10.1101/gad.947102 Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21 (2002). 

  2. Nature A Meissner 454 766 2008 10.1038/nature07107 Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766-770 (2008). 

  3. PLoS Biol. R Illingworth 6 e22 2008 10.1371/journal.pbio.0060022 Illingworth, R. et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 6, e22 (2008). 

  4. Mol. cell. F Mohn 30 755 2008 10.1016/j.molcel.2008.05.007 Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. cell. 30, 755-766 (2008). 

  5. Nat. Genet. M Weber 39 457 2007 10.1038/ng1990 Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457-466 (2007). 

  6. Genome Res. L Laurent 30 320 2010 10.1101/gr.101907.109 Laurent, L. et al. Dynamic changes in the human methylome during differentiation. Genome Res. 30, 320-331 (2010). 

  7. Nature SJ Cokus 452 215 2008 10.1038/nature06745 Cokus, S.J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215-219 (2008). 

  8. Cell R Lister 133 523 2008 10.1016/j.cell.2008.03.029 Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523-536 (2008). 

  9. Nature R Lister 462 296 2009 10.1038/nature08514 Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 296-297 (2009). 

  10. Nat. Methods H Gu 7 133 2010 10.1038/nmeth.1414 Gu, H. et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat. Methods 7, 133-136 (2010). 

  11. Proc. Natl. Acad. Sci. USA M Frommer 89 1827 1992 10.1073/pnas.89.5.1827 Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827-1831 (1992). 

  12. Epigenomics M Bibikova 1 177 2009 10.2217/epi.09.14 Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 1, 177-200 (2009). 

  13. Nat. Genet. F Eckhardt 38 1378 2006 10.1038/ng1909 Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378-1385 (2006). 

  14. Genome Res. B Khulan 16 1046 2006 10.1101/gr.5273806 Khulan, B. et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res. 16, 1046-1055 (2006). 

  15. Genome Res. AL Brunner 19 1044 2009 10.1101/gr.088773.108 Brunner, A.L. et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19, 1044-1056 (2009). 

  16. Genome Res. RA Irizarry 18 780 2008 10.1101/gr.7301508 Irizarry, R.A. et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res. 18, 780-790 (2008). 

  17. Nucleic Acids Res. M Oda 37 3829 2009 10.1093/nar/gkp260 Oda, M. et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 37, 3829-3839 (2009). 

  18. Nat. Biotechnol. TA Down 26 779 2008 10.1038/nbt1414 Down, T.A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 26, 779-785 (2008). 

  19. Nat. Genet. M Weber 37 853 2005 10.1038/ng1598 Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853-862 (2005). 

  20. Methods AB Brinkman 52 232 2010 10.1016/j.ymeth.2010.06.012 Brinkman, A.B. et al. Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52, 232-236 (2010). 

  21. Lab. Invest. T Rauch 85 1172 2005 10.1038/labinvest.3700311 Rauch, T. & Pfeifer, G.P. Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab. Invest. 85, 1172-1180 (2005). 

  22. Nucleic Acids Res. D Serre 38 391 2009 10.1093/nar/gkp992 Serre, D., Lee, B.H. & Ting, A.H. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 38, 391-399 (2009). 

  23. Nat. Biotechnol C Bock 28 1106 2010 10.1038/nbt.1681 Bock, C. et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol 28, 1106-1114 (2010). 

  24. Nature SE Baranzini 464 1351 2010 10.1038/nature08990 Baranzini, S.E., et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464, 1351-1356 (2010). 

  25. Nucleic Acids Res. A Meissner 33 5868 2005 10.1093/nar/gki901 Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868-5877 (2005). 

  26. Proc. Natl. Acad. Sci. USA BH Ramsahoye 97 5237 2000 10.1073/pnas.97.10.5237 Ramsahoye, B.H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci. USA 97, 5237-5242 (2000). 

  27. Genome Res. H Li 18 1851 2008 10.1101/gr.078212.108 Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851-1858 (2008). 

  28. BMC Bioinformatics PY Chen 11 203 2010 10.1186/1471-2105-11-203 Chen, P.Y., Cokus, S.J. & Pellegrini, M. BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11, 203 (2010). 

  29. BMC Bioinformatics Y Xi 10 232 2009 10.1186/1471-2105-10-232 Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009). 

  30. Nucleic Acids Res. D Karolchik 31 51 2003 10.1093/nar/gkg129 Karolchik, D. et al. The UCSC Genome Browser Database. Nucleic Acids Res. 31, 51-54 (2003). 

  31. Nat. Biotechnol. S Beck 28 1016 2010 10.1038/nbt1010-1026 Beck, S. Taking the measure of the methylome. Nat. Biotechnol. 28, 1016-1028 (2010). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로