$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Carbon nanotubes as adsorbents in environmental pollution management: A review

Chemical engineering journal, v.170 no.2/3, 2011년, pp.395 - 410  

Ren, Xuemei (Key Lab of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China) ,  Chen, Changlun (Key Lab of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China) ,  Nagatsu, Masaaki (Graduate School of Science and Technology, Shizuoka University, 3-5-1, Johoku, Naka-ku, Hamamatsu 432-8561, Japan) ,  Wang, Xiangke (Key Lab of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China)

Abstract AI-Helper 아이콘AI-Helper

AbstractCarbon nanotubes (CNTs) have aroused widespread attention as a new type of adsorbents due to their outstanding ability for the removal of various inorganic and organic pollutants, and radionuclides from large volumes of wastewater. This review summarizes the properties of CNTs and their prop...

주제어

참고문헌 (209)

  1. Nature Iijima 354 56 1991 10.1038/354056a0 Helical microtubules of graphitic carbon 

  2. Mater. Sci. Eng. R Popov 43 61 2004 10.1016/j.mser.2003.10.001 Carbon nanotubes: properties and application 

  3. J. Phys. Chem. Endo 96 6941 1992 10.1021/j100196a017 Formation of carbon nanofibers 

  4. Nature Ebbesen 358 220 1992 10.1038/358220a0 Large scale synthesis of carbon nanotubes 

  5. J. Cryst. Growth Oberlin 32 335 1976 10.1016/0022-0248(76)90115-9 Filamentous grouth of carbon through benzene decomposition 

  6. Nature Iijima 363 603 1993 10.1038/363603a0 Single-shell carbon nanotubes of 1-nm diameter 

  7. Nature Bethune 363 605 1993 10.1038/363605a0 Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls 

  8. Chem. Soc. Rev. Britz 35 637 2006 10.1039/b507451g Noncovalent interactions of molecules with single walled carbon nanotubes 

  9. Acc. Chem. Res. Avouris 35 1026 2002 10.1021/ar010152e Molecular electronics with carbon nanotubes 

  10. Compos. Sci. Technol. Thostenson 61 1899 2001 10.1016/S0266-3538(01)00094-X Advances in the science and technology of carbon nanotubes and their composites: a review 

  11. Acc. Chem. Res. Zhao 42 1161 2009 10.1021/ar900056z Noncovalent functionalization of single-walled carbon nanotubes 

  12. Sep. Purif. Technol. Rao 58 224 2007 10.1016/j.seppur.2006.12.006 Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review 

  13. Environ. Sci. Technol. Pan 42 9005 2008 10.1021/es801777n Adsorption mechanisms of organic chemicals on carbon nanotubes 

  14. Acc. Chem. Res. Kondratyuk 40 995 2007 10.1021/ar700013c Molecular views of physical adsorption inside and outside of single-wall carbon manotubes 

  15. J. Hazard. Mater. Chen 164 923 2009 10.1016/j.jhazmat.2008.08.089 Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II) 

  16. Ind. Eng. Chem. Res. Long 40 4288 2001 10.1021/ie000976k Carbon nanotubes as a superior sorbent for nitrogen oxides 

  17. J. Am. Chem. Soc. Long 123 2058 2001 10.1021/ja003830l Carbon nanotubes as superior sorbent for dioxin removal 

  18. Carbon Agnihotri 43 2379 2005 10.1016/j.carbon.2005.04.020 Adsorption equilibrium of organic vapors on single-walled carbon nanotubes 

  19. Adsorpt. Sci. Technol. Di 22 467 2004 10.1260/0263617042879537 Adsorption of chromium(VI) ions from water by carbon nanotubes 

  20. Carbon Tan 46 1741 2008 10.1016/j.carbon.2008.07.023 Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution 

  21. Sep. Purif. Technol. Wang 58 17 2007 10.1016/j.seppur.2007.07.006 Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes 

  22. Sep. Purif. Technol. Chen 65 305 2009 10.1016/j.seppur.2008.10.048 Hydrogen adsorption in defective carbon nanotubes 

  23. Phys. Rev. B Gaur 78 125422 2008 10.1103/PhysRevB.78.125422 Substrate-enhanced O2 adsorption and complexity in the Raman G-band spectra of individual metallic carbon nanotubes 

  24. Appl. Surf. Sci. Masenelli-Varlot 196 209 2002 10.1016/S0169-4332(02)00059-4 Comparative adsorption of simple molecules on carbon nanotubes dependence of the adsorption properties on the nanotube morphology 

  25. Chem. Phys. Lett. Li 357 263 2002 10.1016/S0009-2614(02)00502-X Lead adsorption on carbon nanotubes 

  26. Carbon Li 41 2787 2003 10.1016/S0008-6223(03)00392-0 Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes 

  27. Ind. Eng. Chem. Res. Chen 45 9144 2006 10.1021/ie060791z Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes 

  28. Environ. Sci. Technol. Chen 43 2362 2009 10.1021/es803018a Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid 

  29. J. Colloid Interface Sci. Chen 323 33 2008 10.1016/j.jcis.2008.04.046 Surface complexation modeling of Sr(II) and Eu(III) adsorption onto oxidized multiwall carbon nanotubes 

  30. J. Phys. Chem. C Goering 112 10114 2008 10.1021/jp801686u Adsorption kinetics of alcohols on single-wall carbon nanotubes: an ultrahigh vacuum surface chemistry study 

  31. Environ. Sci. Technol. Hyung 42 4416 2008 10.1021/es702916h Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters 

  32. J. Phys. Chem. B Agnihotri 110 7640 2006 10.1021/jp060040a Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes 

  33. J. Phys. Chem. B Kondratyuk 109 20999 2005 10.1021/jp0582078 Observation of a one-dimensional adsorption site on carbon nanotubes: adsorption of alkanes of different molecular lengths 

  34. Chem. Phys. Lett. Kondratyuk 410 324 2005 10.1016/j.cplett.2005.05.073 Desorption kinetic detection of different adsorption sites on opened carbon single walled nanotubes: the adsorption of n-nonane and CCl4 

  35. J. Chem. Phys. Gatica 114 3765 2001 10.1063/1.1339886 Quasi-one- and two-dimensional transitions of gases adsorbed on nanotube bundles 

  36. Langmuir Agnihotri 21 896 2005 10.1021/la047662c Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation 

  37. Phys. Rev. Lett. Talapatra 85 138 2000 10.1103/PhysRevLett.85.138 Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles 

  38. Langmuir Muris 16 7019 2000 10.1021/la991670p Methane and krypton adsorption on single-walled carbon nanotubes 

  39. Surf. Sci. Muris 492 67 2001 10.1016/S0039-6028(01)01362-0 Where are the molecules adsorbed on single-walled nanotubes? 

  40. Chem. Phys. Lett. Fujiwara 336 205 2001 10.1016/S0009-2614(01)00111-7 Gas adsorption in the inside and outside of single-walled carbon nanotubes 

  41. J. Am. Chem. Soc. Byl 125 5889 2003 10.1021/ja020949g Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: a vibrational spectroscopy study 

  42. Phys. Rev. Lett. Pearce 95 185302 2005 10.1103/PhysRevLett.95.185302 One-dimensional and two-dimensional quantum systems on carbon nanotube bundles 

  43. Phys. Rev. B Bienfait 70 035410 2004 10.1103/PhysRevB.70.035410 Thermodynamics and structure of hydrogen, methane, argon, oxygen, and carbon dioxide adsorbed on single-wall carbon nanotube bundles 

  44. J. Phys. Chem. B Heroux 110 12597 2006 10.1021/jp060956h CF4 on carbon nanotubes: physisorption on grooves and external surfaces 

  45. Phys. Rev. B Jiang 72 045447 2005 10.1103/PhysRevB.72.045447 Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation 

  46. Langmuir LaBrosse 24 9430 2008 10.1021/la801051u Adsorption of gases in carbon nanotubes: are defect interstitial sites important? 

  47. Carbon Babaa 42 1549 2004 10.1016/j.carbon.2004.02.004 Physical adsorption of carbon tetrachloride on as-produced and on mechanically opened single walled carbon nanotubes 

  48. Phys. Rev. B Rols 71 155411 2005 10.1103/PhysRevB.71.155411 Argon adsorption in open-ended single-wall carbon nanotubes 

  49. J. Phys. Chem. C Burde 111 5057 2007 10.1021/jp065428k Physisorption kinetics in carbon nanotube bundles 

  50. J. Phys. Chem. C Rawat 111 12980 2007 10.1021/jp072786u Equilibration time: kinetics of gas adsorption on closed- and open-ended single-walled carbon nanotubes 

  51. Chem. Phys. Lett. Ulbricht 363 252 2002 10.1016/S0009-2614(02)01175-2 Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles 

  52. Surf. Sci. Babaa 531 86 2003 10.1016/S0039-6028(03)00442-4 Opening of single-walled carbon nanotubes: evidence given by krypton and xenon adsorption 

  53. Carbon Agnihotri 44 2376 2006 10.1016/j.carbon.2006.05.038 Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles 

  54. Science Liu 286 1127 1999 10.1126/science.286.5442.1127 Hydrogen storage in single-walled carbon nanotubes at room temperature 

  55. Carbon Li 42 2375 2004 10.1016/j.carbon.2004.02.025 Characterization of single-wall carbon nanotubes by N2 adsorption 

  56. Carbon Hou 46 2003 2008 10.1016/j.carbon.2008.09.009 Purification of carbon nanotubes 

  57. Science Liu 280 1253 1998 10.1126/science.280.5367.1253 Fullerene pipes 

  58. Carbon Toebes 42 307 2004 10.1016/j.carbon.2003.10.036 The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers 

  59. Langmuir Byl 21 4200 2005 10.1021/la040132w Etching of carbon nanotubes by ozone - a surface area study 

  60. J. Phys. Chem. B Liu 110 13037 2006 10.1021/jp055999x Ozonization at the vacancy defect site of the single-walled carbon nanotube 

  61. Carbon Sham 44 768 2006 10.1016/j.carbon.2005.09.013 Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments 

  62. J. Phys. Chem. C Chen 113 7659 2009 10.1021/jp9012015 Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment 

  63. Aust. J. Chem. Takagi 60 519 2007 10.1071/CH06409 Effects of nitric acid and heat treatment on hydrogen adsorption of single-walled carbon nanotubes 

  64. Chem. Eng. J. Lu 139 462 2008 10.1016/j.cej.2007.08.013 Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution 

  65. Colloid Surf. A Xie 308 54 2007 10.1016/j.colsurfa.2007.05.028 Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes 

  66. Sep. Purif. Technol. Lu 58 113 2007 10.1016/j.seppur.2007.07.036 Adsorption of natural organic matter by carbon nanotubes 

  67. Int. J. Hydrogen Energy Kocabas 33 1693 2008 10.1016/j.ijhydene.2008.01.004 Effect of thermal treatments and palladium loading an hydrogen sorption characteristics of single-walled carbon nanotubes 

  68. Appl. Surf. Sci. Lu 254 7035 2008 10.1016/j.apsusc.2008.05.282 Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions 

  69. J. Colloid Interface Sci. Wang 316 277 2007 10.1016/j.jcis.2007.07.075 Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II) 

  70. J. Hazard. Mater. Lu 138 304 2006 10.1016/j.jhazmat.2006.05.076 Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes 

  71. Chem. Phys. Lett. Peng 376 154 2003 10.1016/S0009-2614(03)00960-6 Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes 

  72. J. Phys. Chem. C Piao 112 2857 2008 10.1021/jp077047s Adsorption of l-phenylalanine on single-walled carbon nanotubes 

  73. Helv. Chim. Acta Onyestyak 87 1508 2004 10.1002/hlca.200490137 Acetylene sorption dynamics in carbon nanotubes 

  74. Environ. Sci. Technol. Cho 42 2899 2008 10.1021/es702363e Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes 

  75. Colloid Surf. A Liao 312 160 2008 10.1016/j.colsurfa.2007.06.045 The adsorption of resorcinol from water using multi-walled carbon nanotubes 

  76. J. Chem. Phys. Kuznetsova 112 9590 2000 10.1063/1.481575 Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase 

  77. Chem. Phys. Lett. Kuznetsova 321 292 2000 10.1016/S0009-2614(00)00341-9 Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports 

  78. Mater. Chem. Phys. Huang 78 144 2003 10.1016/S0254-0584(02)00305-X The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes 

  79. Environ. Sci. Technol. Chen 42 8297 2008 10.1021/es801376w Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes 

  80. Phys. Rev. B Durgun 76 073413 2007 10.1103/PhysRevB.76.073413 Hydrogen storage capacity of Ti-doped boron-nitride and B/Be-substituted carbon nanotubes 

  81. Chem. Phys. Denis 353 79 2008 10.1016/j.chemphys.2008.07.024 Methane adsorption inside and outside pristine and N-doped single wall carbon nanotubes 

  82. J. Phys. Chem. C Yeung 112 7401 2008 10.1021/jp0753981 Adsorption of small gas molecules onto Pt-doped single-walled carbon nanotubes 

  83. Int. J. Hydrogen Energy Turker 32 1933 2007 10.1016/j.ijhydene.2006.10.043 Hydrogen storage capability of Se@C120 system 

  84. J. Power Sources Nakano 163 125 2006 10.1016/j.jpowsour.2006.04.023 First-principle molecular-dynamics study of hydrogen adsorption on an aluminum-doped carbon nanotube 

  85. J. Phys. Chem. C Buttner 113 4829 2009 10.1021/jp810139q Enhancement of adsorption inside single-walled carbon nanotubes: Li doping effect on n-heptane van der Waals bonding 

  86. Chem. Phys. Lett. Challet 377 544 2003 10.1016/S0009-2614(03)01171-0 D2 adsorption in potassium-doped single-wall carbon nanotubes: a neutron diffraction and isotherms study 

  87. Carbon Zhou 44 939 2006 10.1016/j.carbon.2005.10.016 Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations 

  88. Carbon Li 47 850 2009 10.1016/j.carbon.2008.11.048 A first-principles study of nitrogen- and boron-assisted platinum adsorption on carbon nanotubes 

  89. Chem. Phys. Lett. Fagan 437 79 2007 10.1016/j.cplett.2007.01.071 Ab initio study of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin adsorption on single wall carbon nanotubes 

  90. Langmuir Cho 26 967 2010 10.1021/la902440u Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon 

  91. Colloids Surf. A Shao 360 74 2010 10.1016/j.colsurfa.2010.02.013 Preconcentration of Pb2+ from aqueous solution using poly(acrylamide) and poly(N,N-dimethylacrylamide) grafted multiwalled carbon nanotubes 

  92. Environ. Sci. Technol. Zhang 43 5719 2009 10.1021/es900453e The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds 

  93. J. Hazard. Mater. Chen 169 912 2009 10.1016/j.jhazmat.2009.04.034 Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes 

  94. J. Colloid Interface Sci. Shen 330 1 2009 10.1016/j.jcis.2008.10.023 Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes 

  95. Environ. Sci. Technol. Wang 43 6214 2009 10.1021/es901062t Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes 

  96. Microelectron. Eng. Appenzeller 64 391 2002 10.1016/S0167-9317(02)00813-4 Carbon nanotubes as potential building blocks for future nanoelectronics 

  97. Science Kong 287 622 2000 10.1126/science.287.5453.622 Nanotube molecular wires as chemical sensors 

  98. Appl. Phys. Lett. Novak 83 4026 2003 10.1063/1.1626265 Nerve agent detection using networks of single-walled carbon nanotubes 

  99. Rev. Mod. Phys. Calbi 73 857 2001 10.1103/RevModPhys.73.857 Colloquium: condensed phases of gases inside nanotube bundles 

  100. Chem. Phys. Lett. Cheng 289 602 1998 10.1016/S0009-2614(98)00479-5 Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons 

  101. Phys. Rev. Lett. Calbi 94 246103 2005 10.1103/PhysRevLett.94.246103 Energy barriers at the ends of carbon nanotube bundles: effects on interstitial adsorption kinetics 

  102. Phys. Rev. Lett. Shi 91 015504 2003 10.1103/PhysRevLett.91.015504 Gas adsorption on heterogeneous single-walled carbon nanotube bundles 

  103. J. Chem. Phys. Arab 126 054709 2007 10.1063/1.2431364 Characterization of single wall carbon nanotubes by means of rare gas adsorption 

  104. Chem. Phys. Lett. Arab 423 183 2006 10.1016/j.cplett.2006.03.063 Determination of the single wall carbon nanotube opening ratio by means of rare gas adsorption 

  105. Phys. Lett. A Sun 372 3493 2008 10.1016/j.physleta.2008.02.030 Gas adsorption on a single walled carbon nanotube-model simulation 

  106. Physica B Pradhan 323 115 2002 10.1016/S0921-4526(02)00994-8 Experimental probes of the molecular hydrogen-carbon nanotube interaction 

  107. Chem. Phys. Ricca 324 455 2006 10.1016/j.chemphys.2005.11.010 The physisorption of CH4 on graphite and on a (9,0) carbon nanotube 

  108. Phys. Rev. B Rawat 74 113403 2006 10.1103/PhysRevB.74.113403 Effect of surface cleaning and functionalization of nanotubes on gas adsorption 

  109. J. Phys.: Condens. Matter Agrawal 18 4649 2006 10.1088/0953-8984/18/19/018 Ab initio study of curvature effects on the physical properties of CH4-doped nanotubes and nanoropes 

  110. Phys. Rev. B Talapatra 65 045416 2002 10.1103/PhysRevB.65.045416 Adsorption of methane on bundles of closed-ended single-wall carbon nanotubes 

  111. Phys. Rev. B Stan 62 2173 2000 10.1103/PhysRevB.62.2173 Uptake of gases in bundles of carbon nanotubes 

  112. Chem. Phys. Lett. Eswaramoorthy 304 207 1999 10.1016/S0009-2614(99)00311-5 A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors 

  113. J. Phys. Chem. B Clewett 109 17907 2005 10.1021/jp052475o 129Xe and 131Xe NMR of gas adsorption on single- and multi-walled carbon nanotubes 

  114. Phys. Status Solidi Clewett 243 3242 2006 10.1002/pssb.200669116 ESR studies of gas adsorption on carbon nanotubes 

  115. Carbon Hou 41 2471 2003 10.1016/S0008-6223(03)00271-9 Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters 

  116. Nanotechnology Zilli 17 5136 2006 10.1088/0957-4484/17/20/016 Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays 

  117. J. Mater. Res. Hsieh 21 1269 2006 10.1557/jmr.2006.0155 Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions 

  118. J. Environ. Sci. China Li 16 208 2004 Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics 

  119. J. Hazard. Mater. Lu 151 239 2008 10.1016/j.jhazmat.2007.05.078 Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon 

  120. Water Res. Li 39 605 2005 10.1016/j.watres.2004.11.004 Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes 

  121. Ind. Eng. Chem. Res. Lu 45 2850 2006 10.1021/ie051206h Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies 

  122. Water Sci. Technol. Li 59 1657 2009 10.2166/wst.2009.162 Ferric ion adsorption and electrodesorption by carbon nanotubes and nanofibres films 

  123. Mater. Sci. Eng. A Wang 466 201 2007 10.1016/j.msea.2007.02.097 Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution 

  124. J. Hazard. Mater. Kul 179 332 2010 10.1016/j.jhazmat.2010.03.009 Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study 

  125. Chem. Eng. J. Nadeem 150 40 2009 10.1016/j.cej.2008.12.001 Pb (II) sorption by acidically modified Cicer arientinum biomass 

  126. J. Colloid Interface Sci. Mohan 310 57 2007 10.1016/j.jcis.2007.01.020 Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production 

  127. J. Colloid Interface Sci. Wu 311 338 2007 10.1016/j.jcis.2007.02.077 Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes 

  128. J. Hazard. Mater. Rao 166 1006 2009 10.1016/j.jhazmat.2008.12.002 Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls 

  129. Desalination Ahmad 247 636 2009 10.1016/j.desal.2009.01.007 Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood 

  130. Appl. Clay Sci. ?ljivi 43 33 2009 10.1016/j.clay.2008.07.009 Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia 

  131. J. Hazard. Mater. Yang 166 109 2009 10.1016/j.jhazmat.2008.11.003 Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA 

  132. Desalination Lu 249 18 2009 10.1016/j.desal.2009.06.009 Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes 

  133. Polyhedron Godino-Salido 28 3781 2009 10.1016/j.poly.2009.07.069 Study of the adsorption capacity to Co2+, Ni2+ and Cu2+ ions of an active carbon/functionalized polyamine hybrid material 

  134. J. Hazard. Mater. Ijagbemi 166 538 2009 10.1016/j.jhazmat.2008.11.085 Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions 

  135. Sep. Purif. Technol. Stafiej 58 49 2007 10.1016/j.seppur.2007.07.008 Adsorption of heavy metal ions with carbon nanotubes 

  136. Desalination Ruparelia 232 145 2008 10.1016/j.desal.2007.08.023 Potential of carbon nanomaterials for removal of heavy metals from water 

  137. J. Hazard. Mater. Gao 167 357 2009 10.1016/j.jhazmat.2009.01.050 Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes 

  138. J. Chem. Technol. Biotechnol. Lu 81 1932 2006 10.1002/jctb.1626 Removal of nickel(II) from aqueous solution by carbon nanotubes 

  139. J. Hazard. Mater. Xu 154 407 2008 10.1016/j.jhazmat.2007.10.059 Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes 

  140. Chem. Eng. Sci. Lu 61 1138 2006 10.1016/j.ces.2005.08.007 Adsorption of zinc(II) from water with purified carbon nanotubes 

  141. J. Environ. Sci. China Kabbashi 21 539 2009 10.1016/S1001-0742(08)62305-0 Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution 

  142. J. Hazard. Mater. Pillay 166 1067 2009 10.1016/j.jhazmat.2008.12.011 Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution 

  143. J. Hazard. Mater. Kandah 146 283 2007 10.1016/j.jhazmat.2006.12.019 Removal of nickel ions from water by multi-walled carbon nanotubes 

  144. Carbon Raymundo-Pinero 43 786 2005 10.1016/j.carbon.2004.11.005 KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation 

  145. Carbon Li 41 1057 2003 10.1016/S0008-6223(02)00440-2 Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes 

  146. Chem. Phys. Lett. Raymundo-Pinero 412 184 2005 10.1016/j.cplett.2005.06.099 A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes 

  147. Diam. Relat. Mater. Li 15 90 2006 10.1016/j.diamond.2005.07.004 Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution 

  148. Langmuir Gao 24 11701 2008 10.1021/la703638h Investigation of the role of surface chemistry and accessibility of cadmium adsorption sites on open-surface carbonaceous materials 

  149. Environ. Pollut. Schierz 157 1088 2009 10.1016/j.envpol.2008.09.045 Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption 

  150. J. Hazard. Mater. Guerra 166 1550 2009 10.1016/j.jhazmat.2008.12.032 Kinetic and thermodynamic uranyl (II) adsorption process into modified Na-Magadiite and Na-Kanemite 

  151. Hydrometallurgy Atia 80 13 2005 10.1016/j.hydromet.2005.03.009 Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins 

  152. Radiochim. Acta Fan 97 141 2009 10.1524/ract.2009.1586 Adsorption of humic acid and Eu(III) to multi-walled carbon nanotubes: effect of pH, ionic strength and counterion effect 

  153. Micropor. Mesopor. Mater. Shao 123 1 2009 10.1016/j.micromeso.2009.03.043 Removal of Eu(III) from aqueous solution using ZSM-5 zeolite 

  154. J. Hazard. Mater. Tan 168 458 2009 10.1016/j.jhazmat.2009.02.051 Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid 

  155. Colloids Surf. A Chen 302 449 2007 10.1016/j.colsurfa.2007.03.007 Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes 

  156. Appl. Radiat. Isot. Sheng 66 1313 2008 10.1016/j.apradiso.2008.03.005 Sorption properties of Th(IV) on the raw diatomite - effects of contact time, pH, ionic strength and temperature 

  157. Appl. Radiat. Isot. Chen 65 155 2007 10.1016/j.apradiso.2006.07.003 Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type 

  158. Environ. Sci. Technol. Wang 39 2856 2005 10.1021/es048287d Sorption of 243Am(III) to multi-wall carbon nanotubes 

  159. Radiochim. Acta Tan 96 23 2008 10.1524/ract.2008.1457 Adsorption and kinetic desorption study of 152+154Eu (III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods 

  160. Carbon Dastgheib 42 547 2004 10.1016/j.carbon.2003.12.062 Tailoring activated carbons for enhanced removal of natural organic matter from natural waters 

  161. J. Phys. Chem. B Shao 113 860 2009 10.1021/jp8091094 Plasma induced drafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution 

  162. Anal. Lett. Liu 37 3085 2004 10.1081/AL-200035912 Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes 

  163. Microchim. Acta Pyrzynska 159 293 2007 10.1007/s00604-007-0739-6 Sorption behavior of acidic herbicides on carbon nanotubes 

  164. Environ. Sci. Technol. Shih 43 851 2009 10.1021/es801663c Evaluating activated carbon-water sorption coefficients of organic compounds using a linear solvation energy relationship approach and sorbate chemical activities 

  165. Abstr. Pap. Am. Chem. Soc. Koelmans 230 U1506 2005 Attenuation of sorption of organic compounds to activated and black carbon 

  166. Carbon Vinu 44 530 2006 10.1016/j.carbon.2005.08.004 Adsorption of L-histidine over mesoporous carbon molecular sieves 

  167. Catal. Today Vinu 102-103 189 2005 10.1016/j.cattod.2005.02.028 microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption 

  168. Environ. Sci. Technol. Yang 42 7931 2008 10.1021/es801463v Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes 

  169. J. Hazard. Mater. Sheng 178 505 2010 10.1016/j.jhazmat.2010.01.110 Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes 

  170. Water Air Soil Pollut. Valderrama 210 421 2010 10.1007/s11270-009-0266-7 Evaluating binary sorption of phenol/aniline from queous solutions onto granular activated carbon and hypercrosslinked polymeric resin (MN200) 

  171. Adsorpt. Sci. Technol. Sharan 27 267 2009 10.1260/026361709789868875 Adsorption of phenol from aqueous solution onto fly ash from a thermal power plant 

  172. J. Hazard. Mater. Zheng 167 141 2009 10.1016/j.jhazmat.2008.12.093 Sorption isotherm and kinetic modeling of aniline on Cr-bentonite 

  173. Phys. Rev. B Tournus 71 165421 2005 10.1103/PhysRevB.71.165421 Ab initio study of benzene adsorption on carbon nanotubes 

  174. Chem. Phys. Lett. Gauden 421 409 2006 10.1016/j.cplett.2006.02.003 Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes 

  175. Int. J. Quantum Chem. Fagan 106 2558 2006 10.1002/qua.20962 First principles study of 1,2-dichlorobenzene adsorption on metallic carbon nanotubes 

  176. Water Res. Lu 39 1183 2005 10.1016/j.watres.2004.12.033 Adsorption of trihalomethanes from water with carbon nanotubes 

  177. Nano Lett. Gotovac 7 583 2007 10.1021/nl0622597 Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons 

  178. Sep. Purif. Technol. Ye 58 2 2007 10.1016/j.seppur.2007.07.003 Adsorption of uraemic toxins on carbon nanotubes 

  179. Micropor. Mater. Takaba 3 449 1995 10.1016/0927-6513(94)00058-4 Molecular design of carbon nanotubes for the separation of molecules 

  180. Carbon Liao 46 553 2008 10.1016/j.carbon.2007.12.009 Adsorption of chlorophenols by multi-walled carbon nanotubes treated with HNO3 and NH3 

  181. Appl. Surf. Sci. Salam 255 1975 2008 10.1016/j.apsusc.2008.06.168 Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multi-walled carbon nanotubes 

  182. Chem. Rev. Yang 2010 10.1021/cr100059s Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application 

  183. Environ. Sci. Technol. Chen 41 8295 2007 10.1021/es071230h Adsorption of polar and nonpolar organic chemicals to carbon nanotubes 

  184. J. Hazard. Mater. Shih 154 21 2008 10.1016/j.jhazmat.2007.09.095 Adsorption of selected volatile organic vapors on multiwall carbon nanotubes 

  185. Nano Lett. Fagan 4 1285 2004 10.1021/nl0493895 1,2-dichlorobenzene interacting with carbon nanotubes 

  186. Nanotechnology Zhao 13 195 2002 10.1088/0957-4484/13/2/312 Gas molecule adsorption in carbon nanotubes and nanotube bundles 

  187. Environ. Sci. Technol. Pan 42 5480 2008 10.1021/es8001184 Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials 

  188. J. Mater. Chem. Wang 12 1636 2002 10.1039/b201447e Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials 

  189. J. Chem. Eng. Data Lee 51 963 2006 10.1021/je050467v Methane adsorption on multi-walled carbon nanotube at (303.15, 313. 15, and 323. 15)K 

  190. Org. Biomol. Chem. Cockroft 5 1062 2007 10.1039/b617576g Substituent effects on aromatic stacking interactions 

  191. J. Am. Chem. Soc. Hunter 112 5525 1990 10.1021/ja00170a016 The nature of π-π interactions 

  192. Phys. Rev. B Tournus 72 075431 2005 10.1103/PhysRevB.72.075431 π-Stacking interaction between carbon nanotubes and organic molecules 

  193. Phys. Rev. B Woods 75 155415 2007 10.1103/PhysRevB.75.155415 Adsorption of simple benzene derivatives on carbon nanotubes 

  194. Nano Lett. Star 3 1421 2003 10.1021/nl0346833 Interaction of aromatic compounds with carbon nanotubes: correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response 

  195. Environ. Sci. Technol. Lin 42 7254 2008 10.1021/es801297u Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups 

  196. Environ. Sci. Technol. Hyung 41 179 2007 10.1021/es061817g Natural organic matter stabilizes carbon nanotubes in the aqueous phase 

  197. Environ. Pollut. Chappell 157 1081 2009 10.1016/j.envpol.2008.09.039 Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances 

  198. J. Colloid Interface Sci. Summers 122 367 1988 10.1016/0021-9797(88)90372-4 Activated carbon adsorption of humic substances. 1. Heterodisperse mixture and desorption 

  199. Chem. Lett. Terashima 36 302 2007 10.1246/cl.2007.302 Solubilization of [60]fullerene in water by aquatic humic substances 

  200. Langmuir Chibowski 14 5237 1998 10.1021/la971107b Surface free energy, adsorption and zeta potential in leacril/tannic acid system 

  201. Environ. Sci. Technol. Lin 42 5917 2008 10.1021/es800329c Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions 

  202. Chem. Phys. Lett. Goering 447 121 2007 10.1016/j.cplett.2007.09.015 Adsorption kinetics of thiophene on single-walled carbon nanotubes (CNTs) 

  203. J. Phys. Chem. B Gotovac 110 16219 2006 10.1021/jp0611830 Phenanthrene adsorption from solution on single wall carbon nanotubes 

  204. Environ. Sci. Technol. Yang 40 5804 2006 10.1021/es061081n Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes 

  205. Carbon Chen 48 939 2010 10.1016/j.carbon.2009.10.033 Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment 

  206. Appl. Phys. Lett. Chen 96 131504 2010 10.1063/1.3377007 Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water 

  207. J. Phys. Chem. B Hu 114 6779 2010 10.1021/jp911424k Plasma induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application 

  208. Chemosphere Shao 79 679 2010 10.1016/j.chemosphere.2010.03.008 Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes 

  209. Plasma Process. Polym. Shao 7 552 2010 10.1002/ppap.201000005 SDBS modified XC-72 Carbon for the removal of Pb(II) from aqueous solutions 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로