최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Carbon, v.50 no.1, 2012년, pp.170 - 174
Kim, J.Y. (Electronics Material Lab., SAIT Samsung Electronics, Yongin 446-712, Republic of Korea) , Bae, M.J. , Park, S.H. , Jeong, T. , Song, S. , Lee, J. , Han, I. , Yoo, J.B. , Jung, D. , Yu, S.
Inorganic powder electroluminescence (IPEL) devices with the insertion of a carbon nanotube (CNT) layer were investigated to verify the effect of the increased local field produced by CNTs on electroluminescence (EL). To increase the field strength effectively, the CNTs were shortened using...
Carbon Wang 41 2939 2003 10.1016/S0008-6223(03)00390-7 A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio
Carbon Zhu 44 253 2006 10.1016/j.carbon.2005.07.037 Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays
J Appl Phys Chhowalla 90 5308 2001 10.1063/1.1410322 Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition
J Appl Phys Choi 94 487 2003 10.1063/1.1581377 Enhanced electron emission from carbon nanotubes though density control using in situ plasma treatment of catalyst metal
Jpn J Appl Phys Kim 44 15 L454 2005 10.1143/JJAP.44.L454 Printed carbon nanotube field emitters for backlight applications
Appl Phys Lett Bae 95 071901-1 2009 10.1063/1.3196430
J Chem Phys Destriau 33 587 1936 Scintillation of zinc sulphide with ü-rays
IEEE Trans Electron Dev Kim 57 6 1470 2010 10.1109/TED.2010.2045675 Paper as a substrate for inorganic powder electroluminescence devices
J Mater Sci Mater Electron Satoh 18 S239 2007 10.1007/s10854-007-9197-5 Electrical properties of two-sided luminescence powder-distributed inorganic electroluminescence panels
Miura N. New trial of inorganic EL devices. Proceeding, 14th international workshop on inorganic and organic electroluminescence. Tivoli: Rome, Italy; 2008. p. 427-9.
Phys Rev B Warkentin 75 075301-1 2007 10.1103/PhysRevB.75.075301 Electroluminescence materials ZnS:Cu, Cl and ZnS:Cu, Mn, Cl studied by EXAFS spectroscopy
Shionoya S, Yen WM. Phosphor handbook. Boca Raton: The CRS Press; 1999. p. 581-612.
J Lumin Wang 128 199 2008 10.1016/j.jlumin.2007.07.003 Improvement electroluminescence performance of ZnS:Cu, Cl phosphors by ultrasonic treatment
Ono 1995 Electroluminescent displays
Jpn J Appl Phys Sawada 41 6A 3885 2002 10.1143/JJAP.41.3885 Characteristics of light emission lifetime of electroluminescent phosphor encapsulated by titanium-silicon-oxide film
Mat Sci Eng B Sharama 131 271 2006 10.1016/j.mseb.2006.03.037 Electroluminescent efficiency of alternating current thick film devices using ZnS:Cu,Cl phosphor
Electron Lett Satoh 43 19 1047 2007 10.1049/el:20072231 High-luminosity organic-dye-dispersed inorganic electroluminescent panel
Org Electron Kim 12 3 529 2011 10.1016/j.orgel.2010.12.020 Electroluminescence enhancement of the phosphor dispersed in a polymer matrix using the tandem structure
Appl Phys Lett Alexandrou 80 8 1435 2002 10.1063/1.1449537 Polymer-nanotube composites: burying nanotubes improves their field emission properties
Appl Phys Lett Chhowalla 79 13 2079 2001 10.1063/1.1406557 Field emission from short and stubby vertically aligned carbon nanotubes
Carbon Lee 44 2984 2006 10.1016/j.carbon.2006.05.045 Short carbon nanotubes produced by cryogenic crushing
Jpn J Appl Phys Kim 50 2011 Enhanced optical and electrical properties of inorganic electroluminescent devices using the top-emission structure
Diamond Relat Mater Liu 13 1609 2004 10.1016/j.diamond.2004.01.014 Plasma etching carbon nanotubes arrays and the field emission properties
To compare SWCNT layer incorporated IPEL devices with other group’s devices gives much clear interpretation on the importance of a SWCNT layer. However, the fact that IPEL devices reported elsewhere [9,16,17,25,26] have different structures, materials, and operation conditions, yields to difficult in direct comparison with other devices unlike photovoltaic solar cells. Instead, the reference device, i.e., the IPEL device without SWCNTs, was fabricated and compared with SWCNT IPEL devices, which could explain the meanings of SWCNT’s contribution to EL.
Appl Phys Lett Nien 89 261906-1 2006 10.1063/1.2423326 Raman scattering and electroluminescence of ZnS:Cu,Cl phosphor powder
J Luminescence Han 115 97 2005 10.1016/j.jlumin.2005.02.020 Crystal growth of electroluminescent ZnS:Cu,Cl phosphor and its TiO2 coating by sol-gel method for thick-film EL device
Appl Phys Lett Kymakis 80 1 112 2002 10.1063/1.1428416 Single-wall carbon nanotube/conjugated polymer photovoltaic devices
Science Huynh 295 2425 2002 10.1126/science.1069156 Hybrid nanorod-polymer solar cells
J Electrochem Soc Fischer 110 7 733 1963 10.1149/1.2425863 Electroluminescent lines in ZnS powder particles
J Appl Phys Spindt 47 5248 1976 10.1063/1.322600 Physical properties of thin-film field emission cathodes with molybdenum cones
Appl Phys Lett Baik 96 023105-1 2010 10.1063/1.3291108
Appl Phys Lett Dang 90 1 012907-1 2007 10.1063/1.2430633 Effect of tensile strain on morphology and dielectric property in nanotube polymer nanocomposite
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.