$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Lithium‐Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint

Advanced energy materials, v.2 no.7, 2012년, pp.780 - 800  

Park, Myounggu ,  Sun, Heeyoung ,  Lee, Hyungbok ,  Lee, Junesoo ,  Cho, Jaephil

Abstract AI-Helper 아이콘AI-Helper

AbstractLi‐air rechargeable batteries theoretically have advantages from both secondary batteries and fuel cells, which can be viewed as the best technological blends for automotive applications resolving the so called mileage anxiety problem due to the limited driving range of electrical veh...

참고문헌 (178)

  1. Wagner, Frederick T., Lakshmanan, Balasubramanian, Mathias, Mark F.. Electrochemistry and the Future of the Automobile. The journal of physical chemistry letters, vol.1, no.14, 2204-2219.

  2. M.Farley Los Angeles Times Section Part: A Start Page: 1 Dec 11 1997 1. 

  3. Source:http://www.boston.com/news/local/massachusetts/articles/2011/11/21/greenhouse_gases_soar_no_signs_warming_is_slowed/(accessed on November 23 2011). 

  4. Source:http://www.theatlanticwire.com/technology/2010/05/how‐ devastating‐will‐the‐oil‐spill‐s‐ecological‐impact‐be/24605/(accessed on November 23 2011). 

  5. Source:http://www.newscientist.com/article/dn19021‐gulf‐oil‐leak‐causing‐upheaval‐in‐marine‐ecology.html(accessed on November 23 2011). 

  6. Source:http://www.latimes.com/business/la‐fi‐1121‐chevron‐brazil‐ 20111121 0 1147421.story(accessed on November 23 2011). 

  7. 10.1002/0470090707.ch1 

  8. The TAB Battery Book Root Michael 13 2011 

  9. Batteries in a Portable World Buchmann Isidor 19 2001 

  10. Source:http://www.wired.com/autopia/2010/02/first‐volt‐rolls‐off‐the‐line‐nov‐1/(accessed on November 22 2011). 

  11. http://www.chevrolet.com/volt‐electric‐car/(accessed on November 22 2011). 

  12. Source:http://automobiles.honda.com/fcx‐clarity/(accessed on November 22 2011). 

  13. Source:http://www.nissanusa.com/leaf‐electric‐car/index#/leaf‐electric‐car/index(accessed on November 22 2011). 

  14. Source:http://worldwide.hyundai.com/company‐overview/news‐view.aspx?idx=295&nCurPage=1&strSearchColunm=&strSearchWord=&ListNum=211(accessed on December 7 2011). 

  15. Dell, R.M. Batteries : fifty years of materials development. Solid state ionics, vol.134, no.1, 139-158.

  16. Moseley, P.T., Bonnet, B., Cooper, A., Kellaway, M.J.. Lead-acid battery chemistry adapted for hybrid electric vehicle duty. Journal of power sources, vol.174, no.1, 49-53.

  17. Trinidad, Francisco, Sáez, Francisco, Valenciano, Jesús. High power valve regulated lead-acid batteries for new vehicle requirements. Journal of power sources, vol.95, no.1, 24-37.

  18. Zhang, C.P., Sharkh, S.M., Li, X., Walsh, F.C., Zhang, C.N., Jiang, J.C.. The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery. Energy conversion and management, vol.52, no.12, 3391-3398.

  19. Dhar, S.K., Ovshínsky, S.R., Gifford, P.R., Corrigan, D.A., Fetcenko, M.A., Venkatesan, S.. Nickel/metal hydride technology for consumer and electric vehicle batteries—a review and up-date. Journal of power sources, vol.65, no.1, 1-7.

  20. Köhler, U, Kümpers, J, Ullrich, M. High performance nickel-metal hydride and lithium-ion batteries. Journal of power sources, vol.105, no.2, 139-144.

  21. Karden, Eckhard, Shinn, Paul, Bostock, Paul, Cunningham, James, Schoultz, Evan, Kok, Daniel. Requirements for future automotive batteries – a snapshot. Journal of power sources, vol.144, no.2, 505-512.

  22. Gifford, Paul, Adams, John, Corrigan, Dennis, Venkatesan, Srinivasan. Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles. Journal of power sources, vol.80, no.1, 157-163.

  23. Chau, K.T, Wong, Y.S, Chan, C.C. An overview of energy sources for electric vehicles. Energy conversion and management, vol.40, no.10, 1021-1039.

  24. Sierzchula, W., Bakker, S., Maat, K., van Wee, B.. The competitive environment of electric vehicles: An analysis of prototype and production models. Environmental innovation and societal transitions, vol.2, 49-65.

  25. Source:http://www.chevrolet.com/malibu‐mid‐size‐sedan/(accessed on November 22 2011). 

  26. Source:http://www.ford.com/cars/fusion/specifications/highlights/(accessed on November 22 2011). 

  27. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S., Wilcke, W.. Lithium−Air Battery: Promise and Challenges. The journal of physical chemistry letters, vol.1, no.14, 2193-2203.

  28. Padbury, Richard, Zhang, Xiangwu. Lithium–oxygen batteries—Limiting factors that affect performance. Journal of power sources, vol.196, no.10, 4436-4444.

  29. Kraytsberg, A., Ein-Eli, Y.. Review on Li-air batteries-Opportunities, limitations and perspective. Journal of power sources, vol.196, no.3, 886-893.

  30. Cairns, Elton J., Albertus, Paul. Batteries for Electric and Hybrid-Electric Vehicles. Annual review of chemical and biomolecular engineering, vol.1, 299-320.

  31. Lee, Jang‐Soo, Tai Kim, Sun, Cao, Ruiguo, Choi, Nam‐Soon, Liu, Meilin, Lee, Kyu Tae, Cho, Jaephil. Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced energy materials, vol.1, no.1, 34-50.

  32. Goodenough, J.B., Kim, Y.. Challenges for rechargeable batteries. Journal of power sources, vol.196, no.16, 6688-6694.

  33. Chen, Jun, Cheng, Fangyi. Combination of Lightweight Elements and Nanostructured Materials for Batteries. Accounts of chemical research, vol.42, no.6, 713-723.

  34. Kowalczk, Ian, Read, Jeffery, Salomon, Mark. Li-air batteries: A classic example of limitations owing to solubilities. Pure and applied chemistry. : Chimie pure et appliqueé, vol.79, no.5, 851-860.

  35. Metal/Air Batteries. Linden's Handbook of Batteries Atwater T. B. 33.1 2011 

  36. Bruce, Peter G., Hardwick, Laurence J., Abraham, K.M.. Lithium-air and lithium-sulfur batteries. MRS bulletin, vol.36, no.7, 506-512.

  37. Song, M.K., Park, S., Alamgir, F.M., Cho, J., Liu, M.. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials science & engineering. a review journal. R, Reports, vol.72, no.11, 203-252.

  38. Adams, Jim, Karulkar, Mohan. Bipolar plate cell design for a lithium air battery. Journal of power sources, vol.199, 247-255.

  39. Ida, Shintaro, Thapa, Arjun Kumar, Hidaka, Yuiko, Okamoto, Yohei, Matsuka, Maki, Hagiwara, Hidehisa, Ishihara, Tatsumi. Manganese oxide with a card-house-like structure reassembled from nanosheets for rechargeable Li-air battery. Journal of power sources, vol.203, 159-164.

  40. He, H., Niu, W., Asl, N.M., Salim, J., Chen, R., Kim, Y.. Effects of aqueous electrolytes on the voltage behaviors of rechargeable Li-air batteries. Electrochimica acta, vol.67, 87-94.

  41. Freunberger, Stefan A., Chen, Yuhui, Drewett, Nicholas E., Hardwick, Laurence J., Bardé, Fanny, Bruce, Peter G.. The Lithium–Oxygen Battery with Ether‐Based Electrolytes. Angewandte Chemie. international edition, vol.50, no.37, 8609-8613.

  42. Takechi, Kensuke, Shiga, Tohru, Asaoka, Takahiko. A Li–O2/CO2 battery. Chemical communications : Chem comm, vol.47, no.12, 3463-3465.

  43. Dong, Shanmu, Chen, Xiao, Zhang, Kejun, Gu, Lin, Zhang, Lixue, Zhou, Xinhong, Li, Lanfeng, Liu, Zhihong, Han, Pengxian, Xu, Hongxia, Yao, Jianhua, Zhang, Chuanjian, Zhang, Xiaoying, Shang, Chaoqun, Cui, Guanglei, Chen, Liquan. Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries. Chemical communications : Chem comm, vol.47, no.40, 11291-11293.

  44. Lu, Yi-Chun, Kwabi, David G., Yao, Koffi P. C., Harding, Jonathon R., Zhou, Jigang, Zuin, Lucia, Shao-Horn, Yang. The discharge rate capability of rechargeable Li–O2 batteries. Energy & environmental science, vol.4, no.8, 2999-3007.

  45. Crowther, Owen, Meyer, Benjamin, Salomon, Mark. Methoxybenzene as an Electrolyte Solvent for the Primary Lithium Metal Air Battery. Electrochemical and solid-state letters, vol.14, no.8, A113-A115.

  46. Hyoung Oh, Si, Yim, Taeeun, Pomerantseva, Ekaterina, Nazar, Linda F.. Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell. Electrochemical and solid-state letters, vol.14, no.12, A185-.

  47. Garcia-Lastra, J. M., Bass, J. D., Thygesen, K. S.. Communication: Strong excitonic and vibronic effects determine the optical properties of Li2O2. The Journal of chemical physics, vol.135, no.12, 121101-.

  48. Lu, Yi-Chun, Gasteiger, Hubert A., Shao-Horn, Yang. Method Development to Evaluate the Oxygen Reduction Activity of High-Surface-Area Catalysts for Li-Air Batteries. Electrochemical and solid-state letters, vol.14, no.5, A70-.

  49. Albertus, Paul, Girishkumar, G., McCloskey, Bryan, Sánchez-Carrera, Roel S., Kozinsky, Boris, Christensen, Jake, Luntz, A. C.. Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling. Journal of the Electrochemical Society : JES, vol.158, no.3, A343-.

  50. McCloskey, Bryan D., Scheffler, Rouven, Speidel, Angela, Bethune, Donald S., Shelby, Robert M., Luntz, A. C.. On the Efficacy of Electrocatalysis in Nonaqueous Li–O2 Batteries. Journal of the American Chemical Society, vol.133, no.45, 18038-18041.

  51. Lu, Yi-Chun, Gasteiger, Hubert A., Shao-Horn, Yang. Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries. Journal of the American Chemical Society, vol.133, no.47, 19048-19051.

  52. Freunberger, Stefan A., Chen, Yuhui, Peng, Zhangquan, Griffin, John M., Hardwick, Laurence J., Bardé, Fanny, Novák, Petr, Bruce, Peter G.. Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. Journal of the American Chemical Society, vol.133, no.20, 8040-8047.

  53. Zheng, J. P., Andrei, P., Hendrickson, M., Plichta, E. J.. The Theoretical Energy Densities of Dual-Electrolytes Rechargeable Li-Air and Li-Air Flow Batteries. Journal of the Electrochemical Society : JES, vol.158, no.1, A43-.

  54. Laoire, Cormac Ó, Mukerjee, Sanjeev, Plichta, Edward J., Hendrickson, Mary A., Abraham, K. M.. Rechargeable Lithium/TEGDME-LiPF[sub 6]∕O[sub 2] Battery. Journal of the Electrochemical Society : JES, vol.158, no.3, A302-.

  55. Veith, Gabriel M., Dudney, Nancy J.. Current Collectors for Rechargeable Li-Air Batteries. Journal of the Electrochemical Society : JES, vol.158, no.6, A658-A663.

  56. Zhang, G. Q., Zheng, J. P., Liang, R., Zhang, C., Wang, B., Au, M., Hendrickson, M., Plichta, E. J.. α-MnO2/Carbon Nanotube/Carbon Nanofiber Composite Catalytic Air Electrodes for Rechargeable Lithium-air Batteries. Journal of the Electrochemical Society : JES, vol.158, no.7, A822-.

  57. Xu, Ye, Shelton, William A.. Oxygen Reduction by Lithium on Model Carbon and Oxidized Carbon Structures. Journal of the Electrochemical Society : JES, vol.158, no.10, A1177-.

  58. Yang, Yin, Sun, Qian, Li, Yue-Sheng, Li, Hong, Fu, Zheng-Wen. Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium Air Batteries. Journal of the Electrochemical Society : JES, vol.158, no.10, B1211-.

  59. Ein-Eli, Yair, Kraytsberg, Alexander. Comment on Oxygen Solubility Measurements in Non-Aqueous Electrolytes. Journal of the Electrochemical Society : JES, vol.158, no.5, S13-.

  60. Veith, Gabriel M., Dudney, Nancy J., Howe, Jane, Nanda, Jagjit. Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.29, 14325-14333.

  61. Bryantsev, Vyacheslav S., Giordani, Vincent, Walker, Wesley, Blanco, Mario, Zecevic, Strahinja, Sasaki, Kenji, Uddin, Jasim, Addison, Dan, Chase, Gregory V.. Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•–). The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory, vol.115, no.44, 12399-12409.

  62. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G., Luntz, A. C.. Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry. The journal of physical chemistry letters, vol.2, no.10, 1161-1166.

  63. Allen, Chris J., Mukerjee, Sanjeev, Plichta, Edward J., Hendrickson, Mary A., Abraham, K. M.. Oxygen Electrode Rechargeability in an Ionic Liquid for the Li-Air Battery. The journal of physical chemistry letters, vol.2, no.19, 2420-2424.

  64. Chan, Maria K. Y., Shirley, Eric L., Karan, Naba K., Balasubramanian, Mahalingam, Ren, Yang, Greeley, Jeffrey P., Fister, Tim T.. Structure of Lithium Peroxide. The journal of physical chemistry letters, vol.2, no.19, 2483-2486.

  65. Bryantsev, Vyacheslav S., Blanco, Mario. Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes. The journal of physical chemistry letters, vol.2, no.5, 379-383.

  66. Xiao, Jie, Mei, Donghai, Li, Xiaolin, Xu, Wu, Wang, Deyu, Graff, Gordon L., Bennett, Wendy D., Nie, Zimin, Saraf, Laxmikant V., Aksay, Ilhan A., Liu, Jun, Zhang, Ji-Guang. Hierarchically Porous Graphene as a Lithium–Air Battery Electrode. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.11, 5071-5078.

  67. Yoo, Eunjoo, Zhou, Haoshen. Li−Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts. ACS nano, vol.5, no.4, 3020-3026.

  68. Xiao, Jie, Hu, Jianzhi, Wang, Deyu, Hu, Dehong, Xu, Wu, Graff, Gordon L., Nie, Zimin, Liu, Jun, Zhang, Ji-Guang. Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte. Journal of power sources, vol.196, no.13, 5674-5678.

  69. Xu, Wu, Viswanathan, Vilayanur V., Wang, Deyu, Towne, Silas A., Xiao, Jie, Nie, Zimin, Hu, Dehong, Zhang, Ji-Guang. Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes. Journal of power sources, vol.196, no.8, 3894-3899.

  70. Thapa, A.K., Ishihara, T.. Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium-air battery. Journal of power sources, vol.196, no.16, 7016-7020.

  71. Xu, W., Xu, K., Viswanathan, V.V., Towne, S.A., Hardy, J.S., Xiao, J., Nie, Z., Hu, D., Wang, D., Zhang, J.G.. Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes. Journal of power sources, vol.196, no.22, 9631-9639.

  72. Younesi, S.R., Urbonaite, S., Bjorefors, F., Edstrom, K.. Influence of the cathode porosity on the discharge performance of the lithium-oxygen battery. Journal of power sources, vol.196, no.22, 9835-9838.

  73. Cheng, H., Scott, K.. Selection of oxygen reduction catalysts for rechargeable lithium-air batteries-Metal or oxide?. Applied catalysis. B, Environmental, vol.108, 140-151.

  74. Wang, Yufei, Zheng, Dong, Yang, Xiao-Qing, Qu, Deyang. High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives. Energy & environmental science, vol.4, no.9, 3697-3702.

  75. Mitchell, Robert R., Gallant, Betar M., Thompson, Carl V., Shao-Horn, Yang. All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy & environmental science, vol.4, no.8, 2952-2958.

  76. Liu, Hao, Xing, Yangchuan. Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst. Electrochemistry communications, vol.13, no.6, 646-649.

  77. Wang, Yonggang, Zhou, Haoshen. To draw an air electrode of a Li–air battery by pencil. Energy & environmental science, vol.4, no.5, 1704-1707.

  78. Zhang, Sheng S., Ren, Xiaoming, Read, Jeffrey. Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries. Electrochimica acta, vol.56, no.12, 4544-4548.

  79. Zhang, S.S., Read, J.. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery. Journal of power sources, vol.196, no.5, 2867-2870.

  80. Zhang, Sheng S., Xu, Kang, Read, Jeffrey. A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. Journal of power sources, vol.196, no.8, 3906-3910.

  81. Tran, Chris, Kafle, Janak, Yang, Xiao-Qing, Qu, Deyang. Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation. Carbon, vol.49, no.4, 1266-1271.

  82. He, Ping, Wang, Yonggang, Zhou, Haoshen. Titanium nitride catalyst cathode in a Li–air fuel cell with an acidic aqueous solution. Chemical communications : Chem comm, vol.47, no.38, 10701-10703.

  83. Li, Yongliang, Wang, Jiajun, Li, Xifei, Geng, Dongsheng, Li, Ruying, Sun, Xueling. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chemical communications : Chem comm, vol.47, no.33, 9438-9440.

  84. Zhang, S.S., Foster, D., Read, J.. The effect of quaternary ammonium on discharge characteristic of a non-aqueous electrolyte Li/O2 battery. Electrochimica acta, vol.56, no.3, 1283-1287.

  85. Ren, Xiaoming, Zhang, Sheng S., Tran, Dat T., Read, Jeffrey. Oxygen reduction reaction catalyst on lithium/air battery discharge performance. Journal of materials chemistry, vol.21, no.27, 10118-10125.

  86. Jin, Lei, Xu, Linping, Morein, Christine, Chen, Chun‐hu, Lai, Monique, Dharmarathna, Saminda, Dobley, Arthur, Suib, Steven L.. Titanium Containing γ‐MnO2 (TM) Hollow Spheres: One‐Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions. Advanced functional materials, vol.20, no.19, 3373-3382.

  87. Xu, Wu, Xiao, Jie, Wang, Deyu, Zhang, Jian, Zhang, Ji-Guang. Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries. Electrochemical and solid-state letters, vol.13, no.4, A48-.

  88. Eswaran, M., Munichandraiah, N., Scanlon, L. G.. High Capacity Li-O[sub 2] Cell and Electrochemical Impedance Spectroscopy Study. Electrochemical and solid-state letters, vol.13, no.9, A121-.

  89. Thapa, Arjun Kumar, Saimen, Kazuki, Ishihara, Tatsumi. Pd/MnO[sub 2] Air Electrode Catalyst for Rechargeable Lithium/Air Battery. Electrochemical and solid-state letters, vol.13, no.11, A165-.

  90. Yang, Xin-hui, Xia, Yong-yao. The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. Journal of solid state electrochemistry : current research and development in science and technology, vol.14, no.1, 109-114.

  91. Lu, Yi-Chun, Gasteiger, Hubert A., Crumlin, Ethan, McGuire, Robert, Shao-Horn, Yang. Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries. Journal of the Electrochemical Society : JES, vol.157, no.9, A1016-.

  92. Andrei, P., Zheng, J. P., Hendrickson, M., Plichta, E. J.. Some Possible Approaches for Improving the Energy Density of Li-Air Batteries. Journal of the Electrochemical Society : JES, vol.157, no.12, A1287-.

  93. Zhang, Jian, Xu, Wu, Li, Xiaohong, Liu, Wei. Air Dehydration Membranes for Nonaqueous Lithium-Air Batteries. Journal of the Electrochemical Society : JES, vol.157, no.8, A940-.

  94. Zhang, G. Q., Zheng, J. P., Liang, R., Zhang, C., Wang, B., Hendrickson, M., Plichta, E. J.. Lithium-Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes. Journal of the Electrochemical Society : JES, vol.157, no.8, A953-.

  95. Shanmukaraj, Devaraj, Grugeon, Sylvie, Gachot, Grégory, Laruelle, Stéphane, Mathiron, David, Tarascon, Jean-Marie, Armand, Michel. Boron Esters as Tunable Anion Carriers for Non-Aqueous Batteries Electrochemistry. Journal of the American Chemical Society, vol.132, no.9, 3055-3062.

  96. Park, C.K., Park, S.B., Lee, S.Y., Lee, H., Jang, H., Cho, W.I.. Electrochemical Performances of Lithium-air Cell with Carbon Materials. Bulletin of the Korean chemical society, vol.31, no.11, 3221-3224.

  97. Hummelshøj, J. S., Blomqvist, J., Datta, S., Vegge, T., Rossmeisl, J., Thygesen, K. S., Luntz, A. C., Jacobsen, K. W., Nørskov, J. K.. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. The Journal of chemical physics, vol.132, no.7, 071101-.

  98. Xiao, Jie, Xu, Wu, Wang, Deyu, Zhang, Ji-Guang. Hybrid Air-Electrode for Li/Air Batteries. Journal of the Electrochemical Society : JES, vol.157, no.3, A294-A297.

  99. Xiao, Jie, Wang, Donghai, Xu, Wu, Wang, Deyu, Williford, Ralph E., Liu, Jun, Zhang, Ji-Guang. Optimization of Air Electrode for Li/Air Batteries. Journal of the Electrochemical Society : JES, vol.157, no.4, A487-.

  100. Wang, Deyu, Xiao, Jie, Xu, Wu, Zhang, Ji-Guang. High Capacity Pouch-Type Li-Air Batteries. Journal of the Electrochemical Society : JES, vol.157, no.7, A760-.

  101. Laoire, Cormac O., Mukerjee, Sanjeev, Abraham, K. M.. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.19, 9178-9186.

  102. Muthiah, Palanikkumaran, Hsu, Shu-Hau, Sigmund, Wolfgang. Coaxially Electrospun PVDF−Teflon AF and Teflon AF−PVDF Core−Sheath Nanofiber Mats with Superhydrophobic Properties. Langmuir : the ACS journal of surfaces and colloids, vol.26, no.15, 12483-12487.

  103. Zhang, Jian, Xu, Wu, Liu, Wei. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air. Journal of power sources, vol.195, no.21, 7438-7444.

  104. Zhang, Ji-Guang, Wang, Deyu, Xu, Wu, Xiao, Jie, Williford, R.E.. Ambient operation of Li/Air batteries. Journal of power sources, vol.195, no.13, 4332-4337.

  105. Tran, C., Yang, X.Q., Qu, D.. Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity. Journal of power sources, vol.195, no.7, 2057-2063.

  106. He, P., Wang, Y., Zhou, H.. A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochemistry communications, vol.12, no.12, 1686-1689.

  107. Zhang, Sheng S., Foster, Donald, Read, Jeffrey. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. Journal of power sources, vol.195, no.4, 1235-1240.

  108. Zhang, Tao, Imanishi, Nobuyuki, Shimonishi, Yuta, Hirano, Atsushi, Takeda, Yasuo, Yamamoto, Osamu, Sammes, Nigel. A novel high energy density rechargeable lithium/air battery. Chemical communications : Chem comm, vol.46, no.10, 1661-1663.

  109. Wang, Yonggang, Zhou, Haoshen. A lithium–air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. Chemical communications : Chem comm, vol.46, no.34, 6305-6307.

  110. Wolfenstine, J.. Stability predictions of solid Li-ion conducting membranes in aqueous solutions. Journal of materials science, vol.45, no.14, 3954-3956.

  111. Kumar, Binod, Kumar, Jitendra, Leese, Robert, Fellner, Joseph P., Rodrigues, Stanley J., Abraham, K. M.. A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery. Journal of the Electrochemical Society : JES, vol.157, no.1, A50-.

  112. Yu. Aleshin, G., Semenenko, D.A., Belova, A.I., Zakharchenko, T.K., Itkis, D.M., Goodilin, E.A., Tretyakov, Y.D.. Protected anodes for lithium-air batteries. Solid state ionics, vol.184, no.1, 62-64.

  113. Wang, Y., Zhou, H.. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. Journal of power sources, vol.195, no.1, 358-361.

  114. MIZUNO, Fuminori, NAKANISHI, Shinji, KOTANI, Yukinari, YOKOISHI, Shoji, IBA, Hideki. Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes. 電氣化學および工業物理化學 = Electrochemistry, vol.78, no.5, 403-405.

  115. HAYASHI, Masahiko, MINOWA, Hironobu, TAKAHASHI, Masaya, SHODAI, Takahisa. Surface Properties and Electrochemical Performance of Carbon Materials for Air Electrodes of Lithium-Air Batteries. 電氣化學および工業物理化學 = Electrochemistry, vol.78, no.5, 325-328.

  116. Xu, Wu, Xiao, Jie, Zhang, Jian, Wang, Deyu, Zhang, Ji-Guang. Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment. Journal of the Electrochemical Society : JES, vol.156, no.10, A773-.

  117. Beattie, S. D., Manolescu, D. M., Blair, S. L.. High-Capacity Lithium-Air Cathodes. Journal of the Electrochemical Society : JES, vol.156, no.1, A44-.

  118. Laoire, Cormac O., Mukerjee, Sanjeev, Abraham, K. M., Plichta, Edward J., Hendrickson, Mary A.. Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.113, no.46, 20127-20134.

  119. Hasegawa, Satoshi, Imanishi, Nobuyuki, Zhang, Tao, Xie, Jian, Hirano, Atsushi, Takeda, Yasuo, Yamamoto, Osamu. Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water. Journal of power sources, vol.189, no.1, 371-377.

  120. Imanishi, N., Hasegawa, S., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O.. Lithium anode for lithium-air secondary batteries. Journal of power sources, vol.185, no.2, 1392-1397.

  121. Williford, R.E., Zhang, J.G.. Air electrode design for sustained high power operation of Li/air batteries. Journal of power sources, vol.194, no.2, 1164-1170.

  122. Beattie, S. D., Manolescu, D. M., Blair, S. L.. High-Capacity Lithium-Air Cathodes. Journal of the Electrochemical Society : JES, vol.156, no.1, A44-.

  123. Zhang, Tao, Imanishi, Nobuyuki, Hasegawa, Satoshi, Hirano, Atsushi, Xie, Jian, Takeda, Yasuo, Yamamoto, Osamu, Sammes, Nigel. Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium-Air Secondary Batteries. Electrochemical and solid-state letters, vol.12, no.7, A132-.

  124. Giordani, V., Freunberger, S. A., Bruce, P. G., Tarascon, J.-M., Larcher, D.. H[sub 2]O[sub 2] Decomposition Reaction as Selecting Tool for Catalysts in Li-O[sub 2] Cells. Electrochemical and solid-state letters, vol.13, no.12, A180-.

  125. Zheng, J. P., Liang, R. Y., Hendrickson, M., Plichta, E. J.. Theoretical Energy Density of Li-Air Batteries. Journal of the Electrochemical Society : JES, vol.155, no.6, A432-.

  126. Ye, Hui, Huang, Jian, Xu, Jun John, Khalfan, Amish, Greenbaum, Steve G.. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends. Journal of the Electrochemical Society : JES, vol.154, no.11, A1048-.

  127. Sandhu, Sarwan S., Brutchen, George W., Fellner, Joseph P.. Lithium/air cell: Preliminary mathematical formulation and analysis. Journal of power sources, vol.170, no.1, 196-209.

  128. Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P. G.. Rechargeable Li2O2 Electrode for Lithium Batteries. Journal of the American Chemical Society, vol.128, no.4, 1390-1393.

  129. Abraham, K. M., Jiang, Z.. A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery. Journal of the Electrochemical Society : JES, vol.143, no.1, 1-5.

  130. Blurton, Keith F., Sammells, Anthony F.. Metal/air batteries: Their status and potential — a review. Journal of power sources, vol.4, no.4, 263-279.

  131. Littauer, E. L., Tsai, K. C.. Anodic Behavior of Lithium in Aqueous Electrolytes: I . Transient Passivation. Journal of the Electrochemical Society : JES, vol.123, no.6, 771-776.

  132. Littauer, E. L., Tsai, K. C.. Anodic Behavior of Lithium in Aqueous Electrolytes: II . Mechanical Passivation. Journal of the Electrochemical Society : JES, vol.123, no.7, 964-969.

  133. Source:http://thomsonreuters.com/products_services/science/science_products/a‐z/web_of_science/(accessed on December 1 2011). 

  134. Source:http://www.info.sciverse.com/scopus/about/(accessed on January 2 2012). 

  135. Source:http://www.info.sciverse.com/(accessed on January 2 2012). 

  136. Chemistry Brown T. L. 1997 

  137. Source:http://www.wipo.int/portal/index.html.en(accessed on December 1 2011). 

  138. Source:http://www.wipscorp.com/wips?mid=u1000(accessed on December 1 2011). 

  139. N.Shinji (Toyota Motor Co. Japan). KR Patent Application Publication No. 10‐2010‐0033409 March 29 2010. 

  140. M.Fuminori (Toyota Motor Co. Japan). JP Patent Application Publication No. 2011‐129273 June 30 2011. 

  141. N.Iwao M.Fuminori(Toyota Motor Co. Japan). JP Patent Application Publication No. 2011‐129389 June 30 2011. 

  142. N.Hidetaka (Toyota Motor Co. Japan). JP Patent Application Publication No. 2011‐134594 July 7 2011. 

  143. N.Hidetaka (Toyota Motor Co. Japan). JP Patent Application Publication No. 2011‐134595 July 7 2011. 

  144. H.Oh (National Institute of Advanced Industrial & Technology). JP Patent Application Publication No. 2011‐134628 July 7 2011. 

  145. D.Chua A.Driedger B.Meyer M.Morgan M.Salomon US Patent Application Publication No. 2011/0177400 July 7 2011. 

  146. A.Pulskamp A. R.Drews J.Yang S.Hirano M. A.Tamor (Ford Global Technologies LLC). US Patent Application Publication No. 2011/0165476 July 7 2011. 

  147. S. J.Visco Y. S.Nimon B. D.Katz (PolyPlus Battery Company). US Patent No. 7 282 296 B2 October 16 2007. 

  148. S. J.Visco Y. S.Nimon B. D.Katz (PolyPlus Battery Company). US Patent No. 7 282 302 B2 October 16 2007. 

  149. S. J.Visco B. D.Katz Y. S.Nimon L. C.De Jonghe(PolyPlus Battery Company). US Patent No. 7 282 295 B2 October 16 2007. 

  150. J. D.Affinito Y. V.Mikhaylik Y. M.Geronov C. J.Sheehan(Sion Power Corporation). Publication No. US2007/0221265 A1 September 27 2007. 

  151. A.Zhamu B. Z.Jang Publication No. US2011/0104571 A1 May 5 2011. 

  152. FROST & SULLIVAN Asia Pacific Secondary Lithium Battery Market P4A4‐27 pp.1-61 February 2011 (accessed in August 18 2011) 

  153. FROST & SULLIVAN European Secondary Lithium Battery Market M46F‐27 pp.1-62 December 2009 (accessed in August 18 2011). 

  154. FROST & SULLIVAN Technical Insights Microelectronics Technology Alert pp. 1‐2 April 29th 2011 (accessed in August 18 2011) 

  155. FROST & SULLIVAN Technical Insights Automotive & Transportation Technology Alert pp. 2‐4 June 10th 2011 (accessed in August 18 2011. 

  156. Source:http://www.frost.com/prod/servlet/frost‐home.pag(accessed on December 1 2011) 

  157. Source: Exellatron:http://www.excellatron.com/technology.htm(accessed on October 31st 2011) 

  158. PolyPlus:http://www.polyplus.com/company.html(accessed on October 31st 2011) 

  159. source:http://www.greentechmedia.com/articles/read/the‐battery‐of‐the‐future/(accessed on November 1st 2011) 

  160. source:http://www.grist.org/article/2009‐06‐29‐IBM‐batteries‐technology(accessed on November 1st 2011) 

  161. http://www.technologyreview.com/energy/23877/?a=f(accessed on November 1 2011) 

  162. http://www.transportation.anl.gov/publications/transforum/v10/v10n1/lithium_air.html(accessed on November 1 2011) 

  163. http://www.gizmag.com/lithium‐air‐battery/14720/(accessed on November 1 2011) 

  164. http://www.technologyreview.com/energy/23877/?a=f(accessed on November 1 2011) 

  165. W. W.Wilcke Lithium/Air Battery Project. LLIBTA Symposium Large Lithium Ion Battery Technology and Application. 12thInternational Advanced Automotive Battery Conference Orlando Florida USA pp.51-66 February 7‐8 2012. 

  166. L.Nazar presented at The 3rd International Rechargeable Battery Expo Battery Japan Tokyo Japan February 29 2012. 

  167. The 3rdInternational Rechargeable Battery Expo Battery Japan Tokyo Big Sight Japan February 29 ‐ March 1 2012. 

  168. Wang, Y.-g., Cheng, L., Li, F., Xiong, H.-m., Xia, Y.-y.. High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions. Chemistry of materials : a publication of the American Chemical Society, vol.19, no.8, 2095-2101.

  169. Read, J.. Characterization of the Lithium/Oxygen Organic Electrolyte Battery. Journal of the Electrochemical Society : JES, vol.149, no.9, A1190-.

  170. Mirzaeian, Mojtaba, Hall, Peter J.. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochimica acta, vol.54, no.28, 7444-7451.

  171. Yang, X.h., He, P., Xia, Y.y.. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochemistry communications, vol.11, no.6, 1127-1130.

  172. http://www.norit‐americas.com/activated‐carbon/activated‐carbon‐basics.php?op=adsorption(accessed on April 19 2012). 

  173. Understanding Activated Carbon. Technical paper 00‐010‐TP Norit Americas Inc. November2009. 

  174. http://www.carbonblack.jp/en/cb/seizou.html(accessed on April 19 2012). 

  175. Chan, Maria K. Y., Shirley, Eric L., Karan, Naba K., Balasubramanian, Mahalingam, Ren, Yang, Greeley, Jeffrey P., Fister, Tim T.. Structure of Lithium Peroxide. The journal of physical chemistry letters, vol.2, no.19, 2483-2486.

  176. Wu, H.Y., Zhang, H., Cheng, X.L., Cai, L.C.. The thermodynamic properties of lithium peroxide, Li2O2. Physics letters: A, vol.360, no.2, 352-356.

  177. Kumar, J., Kumar, B.. Development of membranes and a study of their interfaces for rechargeable lithium-air battery. Journal of power sources, vol.194, no.2, 1113-1119.

  178. Park, M., Zhang, X., Chung, M., Less, G.B., Sastry, A.M.. A review of conduction phenomena in Li-ion batteries. Journal of power sources, vol.195, no.24, 7904-7929.

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로