$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Non-Newtonian viscosity in steady-state shear flows 원문보기

Journal of non-Newtonian fluid mechanics, v.192, 2013년, pp.48 - 65  

Malkin, A.Ya.

Abstract AI-Helper 아이콘AI-Helper

Different possible mechanisms of non-Newtonian behavior of polymeric and multi-component materials in shearing are discussed. There are two main types of the non-Newtonian media: fluids with the maximal (zero-shear-rate) Newtonian viscosity and yielding visco-plastic materials. Numerous intermediate...

주제어

참고문헌 (211)

  1. Nat Bur. Stand. Bingham 13 309 1916 10.6028/bulletin.304 An investigation of the laws of plastic flow 

  2. Proc. Am. Assoc. Testing Materials, II Bingham 19 640 1919 Paint, a plastic material and not a viscous liquid; the measurement of its mobility and yield value 

  3. Bingham 1922 Fluidity and Plasticity 

  4. Koll. Z. Ostwald 36 99 1925 10.1007/BF01431449 Ueber die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I 

  5. Koll. Z. Ostwald 47 176 1929 10.1007/BF01496959 Ueber die rechnerische Darstellung des Strukturgebietes der Viskosität 

  6. W. Philippoff, Viskosität der Kolloide, Steinkopff, Dresden, 1942. 

  7. J. Chem. Phys. Flory 17 303 1949 10.1063/1.1747243 The configuration of real polymer chains 

  8. Macromolecules Cotton 7 863 1974 10.1021/ma60042a033 Conformation of polymer chain in the bulk 

  9. J. Phys. Chem. Polverari 100 13687 1996 10.1021/jp960215o Dilute aqueous poly(ethylene oxide) solutions: clusters and single molecules in thermodynamic equilibrium 

  10. Macromolecules Hammouda 37 6932 2004 10.1021/ma049623d Insight into clustering in poly(ethylene oxide) solutions 

  11. Rheol. Acta Gutowski 51 441 2012 10.1007/s00397-011-0614-6 Scaling and mesostructure of carbopol dispersions 

  12. Proc. R. Soc. Lnd, Ser. A Oldroyd 218 122 1953 The elastic and viscous properties of emulsions and suspensions 

  13. K. Kroy, I. Capron, M. Djabourov, On The Viscosity of Emulsions <arXiv:physics//9911078v.1[physics.flu-dyn]>, 30 November, submitted for publication. 

  14. Mekn. Polym. Malkin 3 506 1971 Viscosity anomaly and normal stresses in flow of polymer fluids. I. Normal stress calculations 

  15. J. Polymer Sci. Pao 61 413 1962 10.1002/pol.1962.1206117212 Theories for the flow of dilute solutions of polymers and of nondiluted liquid polymers 

  16. J. Non-Newton. Fluid Mech. Renardy 68 133 1997 10.1016/S0377-0257(96)01466-8 Qualitative correlation between viscometric and linear viscoelastic functions 

  17. J. Polymer Sci. Cox 28 619 1958 10.1002/pol.1958.1202811812 Correlation of dynamic and steady flow viscosities 

  18. Vinogradov 1980 Rheology of Polymers 

  19. Polymer Eng. Sci. Venkataraman 30 308 1990 10.1002/pen.760300508 A comparison of torsional and capillary rheometry for polymer melts: the Cox-Merz rule revised 

  20. J. Rheol. Ferry 43 1355 1999 10.1122/1.551048 Melt rheology of randomly branched polystyrenes 

  21. Rheol. Acta Capron 40 441 2001 10.1007/s003970100161 Water in water emulsions: phase separations and rheology of biopolymer solutions 

  22. Macromolecules Robertson 37 10018 2004 10.1021/ma048148g Reentanglement kinetics in sheared polybutadiene solutions 

  23. J. Non-Newton. Fluid. Mech. Ianniruberto 65 241 1996 10.1016/0377-0257(96)01433-4 On compatibility of the Cox-Merz rule with the model of Doi and Edwards 

  24. Rheol. Acta Mead 50 837 2011 10.1007/s00397-011-0550-5 Analytical derivation of the Cox-Merz rule using the MLD “toy” model for polydisperse linear polymers 

  25. A.Ya. Malkin, A. Isayev, Rheology: Concepts, Methods and Applications, second ed., ChemTec, Toronto, 2012. 

  26. Appl. Mech. Theor. Phys. Leonov 4 107 1964 The theory of thixotropy of visco-elastic media with continuous distribution of relaxation times 

  27. A.Ya. Malkin, Changes in a relaxation spectrum in polymer flow, in: G.V. Vinogradov (Ed.) Adv. Polymer Rheol. Chemia, Moscow, 1970, pp. 174-180 (in Russian). 

  28. Rheol. Acta Rolón-Garrido 48 245 2009 10.1007/s00397-008-0308-x The damping function in rheology 

  29. Makromol. Chem. Wagner 181 1533 1980 10.1002/macp.1980.021810716 Network disentanglement and time-dependent flow behaviour of polymer melts 

  30. Rheol. Acta Uematsu 49 1187 2010 10.1007/s00397-010-0495-0 Rheology of SiO2/(acrylic polymer/epoxy) suspensions. II. Nonlinear stress relaxation 

  31. Vysokomol. Soedin. Trillisky 24B 916 1982 Correlation between elasticity and viscosity anomaly in flow of polymer melts and solutions 

  32. Tanner 2000 Engineering Rheology 

  33. J. Polymer Sci. Part A-2 Vinogradov 10 1061 1972 10.1002/pol.1972.160100609 Viscoelastic properties and flow of narrow distribution polybutadiens and polyisoprenes 

  34. Euro. Polymer J. Malkin 10 445 1974 10.1016/0014-3057(74)90210-9 On rheological properties of polydisperse polymers 

  35. Polymer Eng. Sci. Malkin 31 1590 1991 10.1002/pen.760312206 Flow curve - molecular weight distribution: is the solution of inverse problem possible? 

  36. J. Appl. Polym. Sci. Bersted 19 2167 1975 10.1002/app.1975.070190810 An empirical model relating the molecular weight distribution of high-density polyethylene to the shear dependence of the steady shear melt viscosity 

  37. Polymer Eng. Sci. Shaw 34 159 1994 10.1002/pen.760340213 A closer look at the MWD-viscosity transform 

  38. J. Rheol. Nobile 40 363 1996 10.1122/1.550748 On the stability of molecular weight distributions as computed from the flow curves of polymer melts 

  39. J. Rheol. Wood-Adams 40 761 1996 10.1122/1.550763 Use of rheological measurements to estimate the molecular weight distribution of linear polyethylene 

  40. J. Rheol. Liu 42 453 1998 10.1122/1.550951 Obtaining molecular-weight distribution information from the viscosity data of linear polymer melts 

  41. J. Rheol. Nichetti 42 951 1998 10.1122/1.550908 Viscosity model for polydisperse polymer melts 

  42. 10.1134/S0965545X12080068 A.Ya. Malkin, A.V. Semakov, V.G. Kulichikhin, Non-Newtonian flow of polydisperse polymer melts as a consequence of their relaxation spectrum changes, Vysokomol. Soedin. A, 54 (2012) 1432-1439 ((in Russian) English translation: Polym. Sci., Ser. A. 54 (2012) 752-759). 

  43. 10.1007/978-1-4684-3743-0_85 W. Gleissle, Two simple time-shear rate relations combying viscosity and first normal stress coefficient in the linear and non-linear flow range, in: G. Astarita, G. Marrucci, L. Nicolais (Eds.), Rheology, Proceedings of the 8th International Congress on Rheology, Naples, Italy, vol. 2, Plenum Press, NY, 1980, pp. 457-462. 

  44. Macromolecules Watanabe 34 662 2001 10.1021/ma000897k Equilibrium elasticity of diblock copolymer micellar lattice 

  45. Macromolecules Mortensen 35 7773 2002 10.1021/ma0121013 Shear-induced morphologies of cubic ordered block copolymer micellar networks studied by in situ small-angle neutron scattering and rheology 

  46. Rheol. Acta Mandare 46 1161 2007 10.1007/s00397-007-0198-3 Shear-induced long-range alignment of BCC-ordered block copolymers 

  47. J. Rheol. Vinckier 41 705 1997 10.1122/1.550870 Transient rheological response and morphology evolution of immosible polymer blends 

  48. Annu. Rev. Fluid Mech. Tacker 34 177 2002 10.1146/annurev.fluid.34.082301.144051 Microstructure evolution in polymer blends 

  49. J. Rheol. Oosterlink 49 897 2005 10.1122/1.1940642 Morphology development of a polystyrene/polymethylmethacrylate blends during start-up of uniaxial elongational flow 

  50. V.V. Makarova, M.Yu. Tolstykh, S.J. Picken, E. Mendes, V.G. Kulichikhin, Structure evolution at flow of liquid crystal solutions of hydroxypropylcellulose and nanocomposites on their base, Macromolecules, accepted for publication. 

  51. Chem. Eng. Sci. Brady 56 2921 2001 10.1016/S0009-2509(00)00475-9 Computer simulation of viscous suspensions 

  52. Euro. Polymer J. Viniogradov 9 1231 1973 10.1016/0014-3057(73)90123-7 peculiarities of flowand viscoelastic properties of solutions of polymers with a narrow molecular-weight distribution 

  53. Koll. Zh. Malkin 41 200 1979 Viscosity abisotropy in lyotropic poly-p-benzamide solutions 

  54. Br. J. Appl. Phys. Highgate 18 1019 1967 10.1088/0508-3443/18/7/420 The viscous resistance to motion of a sphere falling through a sheared non-Newtonian liquid 

  55. 10.1134/S0965545X11120108 A.Ya. Malkin, A.V. Semakov, V.G. Kulichikhin, Entanglement knots in polymer melts and concentrated solutions of flexible-chain polymers, Macromodeling, Vysokomol. Soedin. 53 (2011) 2119-2128 (Translation: Polym. Sci., A 53 (2011) 1198-1206). 

  56. Rheol. Acta Malkin 50 485 2011 10.1007/s00397-011-0556-z Modeling macromolecular movement in polymer melts and its relation to non-linear rheology 

  57. Appl. Rheol. Malkin 22 32575 2012 Macroscopic modeling of a single entanglement at high deformation rates of polymer melts 

  58. Rheol. Acta Winter 48 241 2009 10.1007/s00397-008-0329-5 Three views of viscoelasticity for Cox-Merz materials 

  59. R. Lapasin, A. Trevisan, A. Semenzato, G. Baratto, Linear and nonlinear properties of w/o emulsions: dependence on disperse phase concentration, in: Presented at AERC, Portugal, September 2003. 

  60. J. Coll. Interface Sci. Pal 225 359 2000 10.1006/jcis.2000.6776 Shear viscosity behavior of emulsions of two immiscible liquids 

  61. Chem. Eng. Sci. Nicodemo 29 729 1974 10.1016/0009-2509(74)80189-2 Shear rate dependent viscosity of suspensions in Newtonian and non-Newtonian liquids 

  62. J. Rheol. Poslinski 32 703 1988 10.1122/1.549987 Rheological behavior of filled polymeric systems. I. Yield stress and shear thinning effects 

  63. Prog. Organic Coat. Zupančič 30 67 1997 10.1016/S0300-9440(96)00670-4 Rheological characterisation of shear thickening TiO2 suspensions in low molecular polymer solution 

  64. J. Rheol. Reiner 1 5 1929 10.1122/1.2116227 The theory of plastic flow in the rotation viscometer 

  65. J. Non-Newton. Fluid Mech. White 5 177 1979 10.1016/0377-0257(79)85011-9 A plastic-viscoelastic constitutive equation to represent the rheological behavior of concentrated suspensions of small particles in polymer melts 

  66. J. Rheol. Papanastasiou 31 385 1987 10.1122/1.549926 Flow of materials with yield 

  67. J. Non-Newton. Fluid Mech. Alexandrou 100 77 2001 10.1016/S0377-0257(01)00127-6 Steady Herschel-Bulkley fluid flow in three-dimensional expansions 

  68. Kolloid. Zh. Abdraghimova 17 184 1955 Elasto-viscous properties of thixotropic structures in aqueous suspensions of bentonite clays 

  69. Col. Surf. A: Physicochem. Eng. Aspects Ladyzhensky 108 13 1996 10.1016/0927-7757(95)03306-8 Whether or not two types of layer coexist in colloidal gels under shear 

  70. Soft Matter Ilyin 7 9090 2011 10.1039/c1sm06007d Gels of cysteine/Ag-based dilute colloid systems and their rheological properties 

  71. Int. J. Polymer Mater. Vinogradov 2 1 1972 10.1080/00914037208075296 Viscoelastic properties of filled polymers 

  72. J. Rheol. Stokes 49 139 2005 10.1122/1.1835339 The flowability of ice suspensions 

  73. J. Food Eng. Tabilo-Munizaga 67 147 2005 10.1016/j.jfoodeng.2004.05.062 Rheology for the food industry 

  74. 10.1007/s10891-011-0562-0 S.O. Ilyin, A.Ya. Malkin, E.V. Korobko, N.A. Novikova, N.A. Zhuravsky, Rheological properties of highly concentrated suspensions used for producing electro-rheological liquids, Inzh.-Phys. Zh. 84 (2011) 944-953 ((in Russian) English translation - J. Eng. Phys. Thermodynam. 5 (2011) 1062-1025). 

  75. Food Hydrocoll. Pal 20 997 2006 10.1016/j.foodhyd.2005.12.001 Rheology of high internal phase ratio emulsions 

  76. J. Rheol. Zhou 43 651 1999 10.1122/1.551029 The yield stress of concentrated flocculated suspensions of size distributed particles 

  77. Rheol. Acta Heymann 41 307 2002 10.1007/s00397-002-0227-1 On the solid-liquid transition of concentrated suspensions in transient shear flow 

  78. J. Rheol. Aubry 49 425 2005 10.1122/1.1859791 Rheological investigation of the melt state elastic and yield properties of a polyamide-12 layered silicate nanocomposite 

  79. J. Rheol. Rahatekar 50 599 2006 10.1122/1.2221699 Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes 

  80. Phys. Rev. Lett. MacKintosh 75 4425 1995 10.1103/PhysRevLett.75.4425 Elasticity of semiflexible biopolymer networks 

  81. J. Biomater. Sci. Polymer Ed. Leon 9 297 1998 10.1163/156856298X00668 Mechanical properties of a self-assembling oligopeptide matrix 

  82. Tetrahedron Terech 63 7366 2007 10.1016/j.tet.2007.02.067 Rheometry of an androstanol steroid derivative paramagnetic organogel. Methodology for a comparison with a fatty acid organogel 

  83. J. Chem. Soc. Faraday Trans. Buscall I 84 4249 1988 10.1039/f19888404249 Scaling behaviour of the rheology of aggregate networks formed from colloidal particles 

  84. Phys. Rev. E Mason 56 3150 1997 10.1103/PhysRevE.56.3150 Osmotic pressure and viscoelastic shear moduli of concentrated emulsions 

  85. Rheol. Acta Barnes 24 323 1985 10.1007/BF01333960 The yield stress myth? 

  86. Appl. Rheol. Barnes 17 2007 43110 2007 The ‘Yield Stress Myth?’ Paper - 21 years on 

  87. Adv. Polymer Sci. Malkin 96 69 1990 10.1007/3-540-52791-5_2 Rheology of filled polymers 

  88. Ann. Rev. Fluid Mech. Nguyen 47 47 1992 10.1146/annurev.fl.24.010192.000403 Measuring the flow properties of yield stress fluids 

  89. J. Phys. Condens. Matter Vermant 17 187 2005 10.1088/0953-8984/17/4/R02 Flow-induced structure in colloid dispersions 

  90. Rheol. Acta Morris 48 909 2009 10.1007/s00397-009-0352-1 A review of microstructure in concentrated suspensions and its implication for rheology and bulk flow 

  91. J. Rheol. Jackson 47 659 2003 10.1122/1.1562152 A model for large deformation of an ellipsoidal droplet with interfacial tension 

  92. J. Rheol. Caserta 51 761 2007 10.1122/1.2723148 Drop deformation in sheared polymer blends 

  93. Rheol. Acta Minale 49 749 2010 10.1007/s00397-010-0442-0 Models for the deformation of a single ellipsoidal drop: a review 

  94. J. Rheol. Kumar 55 581 2011 10.1122/1.3569585 Dynamics of the orientation behavior and its connection with rheology in sheared non-Brownian suspensions of anisotropic bicolloidal particle 

  95. J. Phys. Chem. Crassous 28 204902 2008 10.1063/1.2921801 Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow 

  96. J. Rheol. Phan 52 649 2008 10.1122/1.2838255 Yielding behavior of repulsion and attraction dominatedcolloidal glasses 

  97. Phys. Rev. Lett. Brader 101 138301 2008 10.1103/PhysRevLett.101.138301 First-principles constitutive equation for suspension rheology 

  98. Phys. Rev. Lett. Zaccone 103 208301 2009 10.1103/PhysRevLett.103.208301 

  99. J. Rheol. Conrad 54 421 2010 10.1122/1.3314295 Arrested fluid-fluid phase separation in depletion systems: Implications of the characteristic length on gel formation and rheology 

  100. J. Rheol. Laurati 55 673 2011 10.1122/1.3571554 Nonlinear rheology of colloidal gels with intermediate volume fraction 

  101. Adv. Colloid Interface Sci. Mewis 147-148 214 2009 10.1016/j.cis.2008.09.005 Thixotropy 

  102. J. Non-Newton. Fluid Mech. Wagner 157 147 2009 10.1016/j.jnnfm.2008.11.004 Current trends in suspension rheology 

  103. Koll. Zh. Malkin 38 181 1976 Time effects in transition through the yield point for coagulation disperse systems 

  104. J. Non-Newton. Fluid Mech. Uhlherr 125 101 2005 10.1016/j.jnnfm.2004.09.009 The shear-induced solid-liquid transition in yield stress materials with chemically different structures 

  105. J.-F. Tassin, Shear induced aggregation of dilute suspensions of non-Brownian particles in a polymer matrix, AERC-2006, Grece, Book of Abstracts, 2006, p. 24. 

  106. Rheol. Acta Caton 47 601 2008 10.1007/s00397-008-0267-2 Plastic behavior of some yield stress fluids: from creep to long-time yield 

  107. Soft Matter. Møller 2 274 2006 10.1039/b517840a Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice 

  108. Rheol. Acta James 26 437 1987 10.1007/BF01333844 Direct measurement of static yield properties of cohesive suspensions 

  109. Science Bonn 324 1401 2009 10.1126/science.1174217 Yield stress fluids slowly yield to analysis 

  110. Phys. Fluids Gueslin 18 103101 2006 10.1063/1.2358090 Flow induced by a sphere settling in an aging yield-stress fluid 

  111. Rheol. Acta Denn 50 2011 307 2011 10.1007/s00397-010-0504-3 Issues in the flow of yield-stress liquids 

  112. J. Non-Newton. Fluid Mech. Mujumdar 102 157 2002 10.1016/S0377-0257(01)00176-8 Transient phenomena in thixotropic systems 

  113. J. Rheol. Coussot 46 573 2003 10.1122/1.1459447 Viscosity bifurcation in thixotropic, yielding fluids 

  114. Phys. Rev. E Zaccone 80 051404 2009 10.1103/PhysRevE.80.051404 Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids 

  115. Colloid Polym. Sci. Pal 277 583 1999 10.1007/s003960050429 Yield stress and viscoelastic properties of high internal phase ratio emulsions 

  116. J. Rheol. Masalova 49 839 2005 10.1122/1.1940641 Rheopexy in highly concentrated emulsions 

  117. Soft Matter Malkin 8 2607 2012 10.1039/c2sm06950d Viscoplasticity and stratified flow of colloid suspensions 

  118. Rheol. Acta Bagusat 44 313 2005 10.1007/s00397-004-0412-5 Shear induced periodic structure changes in concentrated alumina suspensions at constant shear rate monitored by FBRM 

  119. Langmuir Herle 21 9051 2005 10.1021/la0513959 Stress driven shear bands and the effect of confinement on their structures-a rheological, flow visualization, and rheo-SALS study 

  120. J. Colloid Interface Sci. Delgado 312 481 2007 10.1016/j.jcis.2007.03.010 Shear-induced structures formed during thixotropic loops in dilute worm-micelle solutions 

  121. Rheol. Acta Kang 47 499 2008 10.1007/s00397-007-0238-z Is vorticity-banding due to an elastic instability? 

  122. P.C.F. Møller, A. Fall, D. Bonn, No steady state flows below the yield stress, A true yield stress at last? [cond-mat.soft], 9 April 2009. 

  123. Europhys. Lett. Møller 87 38004 2009 10.1209/0295-5075/87/38004 Origin of apparent viscosity in yield stress fluids below yielding 

  124. Philos. Trans. R. Soc. A Møller 367 5139 2009 10.1098/rsta.2009.0194 An attempt to categorize yield stress fluid behavior 

  125. J. Rheol. Masschaele 53 1437 2009 10.1122/1.3237154 Direct visualization of yielding in model two-dimensional colloidal gels subjected to shear flow 

  126. J. Rheol. Franks 44 759 2000 10.1122/1.551111 Effect of interparticle forces on shear thickening of oxide suspensions 

  127. J. Rheol. O’Brien 46 557 2002 10.1122/1.1459446 Shear and elongation flow properties of kaolin suspensions 

  128. Rheol. Acta Lee 42 199 2003 10.1007/s00397-002-0290-7 Dynamic properties if shear thickening colloidal suspensions 

  129. J. Rheol. Egres 49 719 2005 10.1122/1.1895800 The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition 

  130. Phys. Rev. Let. Fall 105 268303 2010 10.1103/PhysRevLett.105.268303 Shear thickening and migration in granular suspensions 

  131. Rheol. Acta Jiang 49 1157 2010 10.1007/s00397-010-0486-1 Shear thickening behavior of polymethylmetacrylate particle suspension in glycerine-water mixtures 

  132. Phys. Rev. E Brown 84 031408 2011 10.1103/PhysRevE.84.031408 Shear thickening and jamming in densely packed suspensions of different particle shapes 

  133. J. Rheol. Brown 56 875 2012 10.1122/1.4709423 The role of dilation and confining stresses in shear thickening of dense suspensions 

  134. J. Coll. Interface Sci. Dahbi 342 564 2010 10.1016/j.jcis.2009.10.042 Rheology and structural arrest of casein suspensions 

  135. Phys. Rev. E Dibble 74 041403 2006 10.1103/PhysRevE.74.041403 Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity 

  136. 10.1063/1.3276799 R.S. Farr, R.D. Groot, Close Packing Density of Polydisperse Hard Spheres, arXiv.org, cond-mat, arXiv:0912.0852v1, 2009. 

  137. Philos. Trans. R. Soc. A Bi 367 5073 2009 10.1098/rsta.2009.0193 Rheology of granular materials: dynamics in a stress landscape 

  138. 10.1002/352760362X H. Hinrichsen, D.E. Wolf (Eds.), The Physics of Granular Media, Wiley-VCH, Weinheim, 2004. 

  139. Phys. Rev. A (General Physics) Huggins 21 1327 1980 10.1103/PhysRevA.21.1327 Vortex currents and hydrodynamic instability in Taylor cells 

  140. Rheol. Acta Larson 31 213 1992 10.1007/BF00366504 Instabilities in viscoelastic flows 

  141. J. Non-Newton. Fluid Mech. Muller 6 315 1993 10.1016/0377-0257(93)85053-D Experimental studies of the onset of oscillatory instability in viscoelastic Taylor-Couette flow 

  142. Rheol. Acta Baumert 34 147 1995 10.1007/BF00398434 Flow visualization of the elastic Taylor-Couette instability in Boger fluids 

  143. Annu. Rev. Fluid Mech. Shaqfeh 28 129 1996 10.1146/annurev.fl.28.010196.001021 Purely elastic instabilities in viscometric flows 

  144. Phys. Rev. Lett. Britten 78 4930 1997 10.1103/PhysRevLett.78.4930 Two-phase shear band structures at uniform stress 

  145. Phys. Rev. Lett. Lerouge 81 5457 1998 10.1103/PhysRevLett.81.5457 Shear banding in a micellar solution under transient flow 

  146. Euro. Phys., J. B Britten 7 237 1999 10.1007/s100510050610 Shear banding instability in wormlike micellar solutions 

  147. J. Rheol. Britten 43 897 1999 10.1122/1.551008 Transition to shear banding in pipe and Couette flow of wormlike micellar solutions 

  148. Phys. Rev. E Fischer 64 011501 2001 10.1103/PhysRevE.64.011501 Shear banding and the isotropic-to-nematic transition in wormlike micelles 

  149. Phys. Rev. Lett. Coussot 88 218301 2002 10.1103/PhysRevLett.88.218301 Coexistance of liquid and solid phases in flowing soft-glass materials 

  150. Phys. Rev. E Salmon 68 051503 2003 10.1103/PhysRevE.68.051503 Shear banding in a lyotropic lamellar phase. Part I: time-averaged velocity profiles 

  151. Phys. Rev. E Salmon 68 051504 2003 10.1103/PhysRevE.68.051504 Shear banding in a lyotropic lamellar phase. Part II: temporal fluctuations 

  152. J. Rheol. Holmes 98 1085 2004 10.1122/1.1773829 Shear banding phenomena in ultrasoft colloidal glasses 

  153. J. Rheol. Hu 49 1001 2005 10.1122/1.2008295 Kinetics and mechanism of shear banding in an entangled micellar solution 

  154. Phys. Rev. Lett. van der Gucht 97 108301 2006 10.1103/PhysRevLett.97.108301 Multiple shear-banding transitions in a supramolecular polymer solution 

  155. Phys. Rev. Liberato 73 020504 2006 Specially resolves small-angle neutron scattering in the 1-2 plane: a study of the shear induced phase separating wormlike micelles 

  156. Phys. Rev. Lett. Tapadia 96 19601 2006 10.1103/PhysRevLett.96.196001 Banding in entangled polymer fluids under oscillatory shearing 

  157. Phys. Rev. E Fielding 76 016301 2007 Vorticity structuring and velocity rolls triggered by gradient shear bands 

  158. J. Non-Newton. Fluid Mech. Miller 143 22 2007 10.1016/j.jnnfm.2006.12.005 Transient evolution of shear-banding wormlike micellar solutions 

  159. Macromolecules Boukany 41 2644 2008 10.1021/ma702332n Observations of wall slip and shear banding in an entangled DNA solution 

  160. Macromolecules Ravindranath 41 2663 2008 10.1021/ma7027352 Banding in simple steady shear of entangled polymer solutions 

  161. J. Rheol. Hu 52 379 2008 10.1122/1.2836937 Comparison between shear banding and shear thinning in entangled micellar solutions 

  162. Phys. Rev. E. Tromp 77 031503 2008 10.1103/PhysRevE.77.031503 Band formation on shearing in phase separated polymer solutions 

  163. Rheol. Acta Callaghan 47 243 2008 10.1007/s00397-007-0251-2 Rheo NMR and shear banding 

  164. Rheol. Acta Olmsed 47 283 2008 10.1007/s00397-008-0260-9 Perspectives on shear banding in complex fluids 

  165. Rheol. Acta Mannerville 47 301 2008 10.1007/s00397-007-0246-z Recent experimental probes of shear banding 

  166. Rheol. Acta Ovarlez 48 831 2009 10.1007/s00397-008-0344-6 Phenomenology and physical origin of shear localization and shear banding in complex fluids 

  167. 10.1122/1.3089579 M.E. Helgeson, P.A. Vasquez, E.W. Kaler, N. J, Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition, J. Rheol. 53 (2009) 727-756. 

  168. J. Non-Newton. Mech. Aledxandrou 158 6 2009 10.1016/j.jnnfm.2009.01.005 Shear rejuvenation, aging and shear banding in yield stress fluids 

  169. Phys. Rev. Lett. Fall 105 225502 2010 10.1103/PhysRevLett.105.225502 Yielding and shear banding in soft glassy materials 

  170. Euro. Phys. J. Coussot 33 183 2010 Physical origin of shear banding in gammed systems 

  171. J. Rheol. Hu 54 1307 2010 10.1122/1.3494134 Steady-state shear banding in entangled polymers? 

  172. Rheol. Acta Dhont 47 257 2008 10.1007/s00397-007-0245-0 Gradiernt and vorticity banding 

  173. Phys. Today Miller 63 18 2010 A complex fluid exhibits unexpected heterogeneous flow 

  174. Adv. Coll. Interface Sci. Malkin 157 75 2010 10.1016/j.cis.2010.04.002 Self-organization in the flow of complex fluids (colloid and polymer systems). Part 1: experimental evidence 

  175. Adv. Coll. Interface Sci. Subbotin 162 29 2011 10.1016/j.cis.2010.10.002 Self-organization in the flow of complex fluids (colloid and polymer systems). Part 2: theoretical models 

  176. Phys. Rev. E Møller 77 041507 2008 10.1103/PhysRevE.77.041507 Shear banding and yield stress in soft glassy materials 

  177. Euro. Phys. Lett. Hu 38 389 1997 10.1209/epl/i1997-00256-8 Inhomogeneous structure formation and shear-thickening in worm-like micellar solutions 

  178. 10.1007/12_2009_13 S. Lerouge, J.-F. Berret, Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles, arXiv:0910.1854v1 [cond-mat.soft], 9 October 2009. 

  179. J. Rheol. Fang 55 939 2011 10.1122/1.3596599 Shear inhomogeneity in poly(ethylene oxide) melt 

  180. Phys. Rev. Lett. Monsenti 92 058303 2004 10.1103/PhysRevLett.92.058303 Vorticity alignment and negative normal stresses in sheared attractive emulsions 

  181. J. Rheol. Lyon 45 881 2001 10.1122/1.1381008 Structure formation in moderately concentrated viscoelastic suspensions in simple shear flow 

  182. J. Rheol. Kok 46 481 2002 10.1122/1.1446882 Near-wall particle depletion in a flowing colloidal suspension 

  183. Phys. Rev. Lett. Haw 92 185506 2004 10.1103/PhysRevLett.92.185506 Jamming, two-fluid behavior, and self-filtration in concentrated particulate suspensions 

  184. Phil. Trans. R. Soc. A Haw 367 5167 2009 10.1098/rsta.2009.0182 Volume fraction variations and dilation in colloids and granulars 

  185. Phys. Rev. Lett. Isa 102 058302 2009 10.1103/PhysRevLett.102.058302 Velocity oscillations in microfluidic flows of concentrated colloidal suspensions 

  186. Phys. Rev. Lett. Besseling 105 268301 2010 10.1103/PhysRevLett.105.268301 Shear banding and flow-concentration coupling in colloidal glasses 

  187. Rheol. Acta Derakhshandeh 51 201 2012 10.1007/s00397-011-0577-7 Thixotropy, yielding and ultrasonic Doppler velocimetry in pulp fibre suspensions 

  188. J. Rheol. Bertola 47 1211 2003 10.1122/1.1595098 Wall slip and yielding in pasty materials 

  189. J. Rheol. Koran 43 1291 1999 10.1122/1.551025 Wall slip of polyisobutylene: interfacial and pressure effects 

  190. J. Rheol. Münstedt 44 413 2000 10.1122/1.551092 Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry 

  191. Rheol. Acta Rodríguez-González 49 45 2010 10.1007/s00397-009-0398-0 Rheo-PIV analysis of the slip flow of a metallocene linear low-density polyethylene melt 

  192. Int. Polymer Process. Hatzikiriakos 25 55 2010 10.3139/217.2304 Appropriate boundary conditions in the flow of molten polymers 

  193. Rheol. Acta D’Avino 51 215 2012 10.1007/s00397-011-0592-8 Migration of a sphere suspended in viscoelastic liquid in Couette flow: experiments and simulation 

  194. Colloids Surf. A: Physicochem. Eng. Aspects Uriev 87 1 1994 10.1016/0927-7757(93)02611-H Structure, rheology and stability of concentrated disperse systems under dynamic conditions 

  195. Phys. Rev. Lett. Dietler 57 3117 1986 10.1103/PhysRevLett.57.3117 Gelation of colloidal silica 

  196. Phys. Rev. B Vacher 37 6500 1988 10.1103/PhysRevB.37.6500 Structure and self-similarity of silica aerogels 

  197. Colloids Surf. A: Physicochem. Eng. Aspects Uriev 108 1 1996 10.1016/0927-7757(95)03305-X Fractal model in rheology of colloidal gels 

  198. J. Non-Newton. Fluid Mech. Scirocco 117 183 2004 10.1016/j.jnnfm.2004.01.010 Effect of the viscoelasticity of the suspending fluid on structure formation in suspensions 

  199. J. Non-Newton. Fluid Mech. Mirsepassi 179-180 1 2012 10.1016/j.jnnfm.2012.04.005 Particle chaining and chain dynamics in viscoelastic liquids 

  200. Rheol. Acta Pasquino 49 993 2010 10.1007/s00397-010-0466-5 The effect of particle size and migration on the formation of flow-induced structures in viscoelastic suspensions 

  201. J. Non-Newton. Fluid Mech. Gunes 155 39 2008 10.1016/j.jnnfm.2008.05.003 Flow-induced orientation of non-spherical particles: effect of aspect ratio and medium rheology 

  202. Uspekhi khimii (Russian Chemical reviews) Uriev 73 39 2004 Physical-chemical dynamics of disperse systems 

  203. Polymer Sci. A Kulichikhin 51 1303 2009 The “chaos-to-order” transition in critical modes of shearing for polymer and nanocomposite melts 

  204. J. Non-Newton. Fluid Mech. Tsebrenko 31 1 1989 10.1016/0377-0257(89)80011-4 Fracture of ultrafine fibers in the flow of non-Newtonian polymers 

  205. J. Rheol. Zhang 50 41 2006 10.1122/1.2135330 Interfacial slip reduces polymer slip adhesion during coextrusion 

  206. Phys. Rev. Lett. Tapadia 91 198301 2003 10.1103/PhysRevLett.91.198301 Yieldlike constitutive transition in shear flow of entangled polymic fluids 

  207. Macromolecules Tapadia 37 9083 2004 10.1021/ma0490855 Nonlinear flow behavior of entangled polymer solutions: yield like entanglement-disentanglement transition 

  208. J. Rheol. Hu 54 1307 2010 10.1122/1.3494134 Steady-state shear bandling in entangled polymers 

  209. J, Non-Newton. Fluid Mech. García-Sandoval 179-180 43 2012 10.1016/j.jnnfm.2012.05.006 Inhomogeneous flows and shear banding formation in micellar solutions: predictions of the BMP model 

  210. Coll. Suf. A: Physchem. Eng. Aspects Bécu 263 146 2005 10.1016/j.colsurfa.2004.12.033 How does a concentrated emulsion flow? Yielding, local rheology, and wall slip 

  211. J. Non-Newton. Fluid Mech. Malkin 147 65 2007 10.1016/j.jnnfm.2007.07.003 Shear and normal stresses in flow of highly concentrated emulsions 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로