$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem 원문보기

Applied and environmental microbiology, v.80 no.4, 2014년, pp.1226 - 1236  

Enning, Dennis (Max Planck Institute for Marine Microbiology, Bremen, Germany) ,  Garrelfs, Julia (Max Planck Institute for Marine Microbiology, Bremen, Germany)

Abstract AI-Helper 아이콘AI-Helper

About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recogniz...

참고문헌 (125)

  1. Mineral commodity summaries 2011 U.S. Geological Survey 2011 U.S. Geological Survey. 2011. Mineral commodity summaries 2011. U.S. Geological Survey, Washington, DC. http://minerals.usgs.gov/minerals/pubs/mcs/2011/mcs2011.pdf. 

  2. FHWA-RD-01-156 Koch GH 2001 KochGHBrongersMPHThompsonNGVirmaniYPPayerJH. 2001. Corrosion cost and preventive strategies in the United States. FHWA-RD-01-156. CC Technologies Laboratories, NACE International, Dublin, OH. 

  3. 10.1002/9780470872864.ch2 

  4. ASM handbook Beaver JA 2006 BeaverJAThompsonNG. 2006. External corrosion of oil and natural gas pipelines. In CramerSDCovinoBSJ (ed), ASM handbook, vol 13C. Corrosion: environments and industries (#05145). ASM International, Materials Park, OH. 

  5. 10.1017/CBO9780511541490.017 

  6. Booth, G. H.. Sulphur Bacteria in Relation to Corrosion. The Journal of applied bacteriology, vol.27, no.1, 174-181.

  7. Flemming, H.‐C.. Mikrobielle Werkstoffzerstörung – Grundlagen: Ökonomisch‐technischer Überblick. Werkstoffe und Korrosion = Materials and corrosion, vol.45, no.1, 5-9.

  8. Grundmeier, G., Schmidt, W., Stratmann, M.. Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochimica acta, vol.45, no.15, 2515-2533.

  9. NACE Corrosion 2011 Conf Sun W 2011 SunWPughDVLingSReddyRVPachecoJLNisbetRSNorNMKerseyMSMorshidiL. 2011. Understanding and quantifying corrosion of L80 carbon steel in sour environments, paper 11063. Abstr. NACE Corrosion 2011 Conf. Expo, Houston, TX. 

  10. 10.1002/9780470872864 

  11. Whitney, W. R.. THE CORROSION OF IRON.. Journal of the American Chemical Society, vol.25, no.4, 394-406.

  12. Enning, Dennis, Venzlaff, Hendrik, Garrelfs, Julia, Dinh, Hang T., Meyer, Volker, Mayrhofer, Karl, Hassel, Achim W., Stratmann, Martin, Widdel, Friedrich. Marine sulfate‐reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental microbiology, vol.14, no.7, 1772-1787.

  13. Rickard, D., Luther III., G. W.. Chemistry of Iron Sulfides. Chemical reviews, vol.107, no.2, 514-562.

  14. 10.1007/978-3-642-96038-3 

  15. Modern electrochemistry Bockris JOM 1970 BockrisJOMReddyAKN. 1970. Modern electrochemistry. Plenum, New York, NY. 

  16. The electrochemistry of corrosion Piron DL 1994 PironDL. 1994. The electrochemistry of corrosion. NACE Press, Houston, TX. 

  17. Videla, Hector A.. Microbially induced corrosion: an updated overview. International biodeterioration & biodegradation, vol.48, no.1, 176-201.

  18. ASM handbook Jack TR 881 2002 JackTR. 2002. Biological corrosion failures, p 881-898. In ShipleyRJBeckerWT (ed), ASM handbook, vol 11. Failure analysis and prevention. ASM International, Materials Park, OH. 

  19. Marine and industrial biofouling Lewandowski Z 35 2009 10.1007/978-3-540-69796-1_3 LewandowskiZBeyenalH. 2009. Mechanisms of microbially influenced corrosion, p 35-64. In FlemmingHCMurthyPSVenkatesanRCookseyKE (ed), Marine and industrial biofouling. Springer, Berlin, Germany. 

  20. Hamilton, W A. Microbially Influenced Corrosion as a Model System for the Study of Metal Microbe Interactions: a Unifying Electron Transfer Hypothesis. Biofouling, vol.19, no.1, 65-76.

  21. 10.1002/047011245X 

  22. Lee, Whonchee, de Beer, Dirk. Oxygen and pH microprofiles above corroding mild steel covered with a biofilm. Biofouling, vol.8, no.4, 273-280.

  23. 10.1002/9780470872864.ch39 

  24. Little, Brenda, Wagner, Patricia, Hart, Kevin, Ray, Richard, Lavoie, Dennis, Nealson, Kenneth, Aguilar, Carmen. The role of biomineralization in microbiologically influenced corrosion. Biodegradation, vol.9, no.1, 1-10.

  25. McBeth, Joyce M., Little, Brenda J., Ray, Richard I., Farrar, Katherine M., Emerson, David. Neutrophilic Iron-Oxidizing “ Zetaproteobacteria ” and Mild Steel Corrosion in Nearshore Marine Environments. Applied and environmental microbiology, vol.77, no.4, 1405-1412.

  26. Starosvetsky, David, Armon, Robert, Yahalom, Josef, Starosvetsky, Jeana. Pitting corrosion of carbon steel caused by iron bacteria. International biodeterioration & biodegradation, vol.47, no.2, 79-87.

  27. J. Microbiol. Biotechnol. Pak KR 937 13 2003 Involvement of organic acid during corrosion of iron coupon by Desulfovibrio desulfuricans PakKRLeeHJLeeHKKimYKOhYSChoiSC. 2003. Involvement of organic acid during corrosion of iron coupon by Desulfovibrio desulfuricans. J. Microbiol. Biotechnol. 13:937-941. 

  28. 10.1016/S0065-2164(08)70077-7 

  29. S. Afr. J. Sci. Costello JA 202 70 1974 Cathodic depolarization by sulphate-reducing bacteria CostelloJA. 1974. Cathodic depolarization by sulphate-reducing bacteria. S. Afr. J. Sci. 70:202-204. 

  30. Cord-Ruwisch, Ralf, Widdel, Friedrich. Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria. Applied microbiology and biotechnology, vol.25, no.2, 169-174.

  31. Park, Hyung Soo, Chatterjee, Indranil, Dong, Xiaoli, Wang, Sheng-Hung, Sensen, Christoph W., Caffrey, Sean M., Jack, Thomas R., Boivin, Joe, Voordouw, Gerrit. Effect of Sodium Bisulfite Injection on the Microbial Community Composition in a Brackish-Water-Transporting Pipeline. Applied and environmental microbiology, vol.77, no.19, 6908-6917.

  32. Hardy, J. A., Bown, J. L.. The Corrosion of Mild Steel by Biogenic Sulfide Films Exposed to Air. Corrosion, vol.40, no.12, 650-654.

  33. Jack, T. R., Wilmott, M., Stockdale, J., Van Boven, G., Worthingham, R. G., Sutherby, R. L.. Corrosion Consequences of Secondary Oxidation of Microbial Corrosion. Corrosion, vol.54, no.3, 246-252.

  34. Lee, Whonchee, Lewandowski, Zbigniew, Morrison, Mike, Characklis, William G., Avci, Recep, Nielsen, Per H.. Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria part II: At high dissolved oxygen concentration. Biofouling, vol.7, no.3, 217-239.

  35. Van Ommen Kloeke, Fintan, Bryant, Richard D., Laishley, Edward J.. Localization of Cytochromes in the Outer Membrane of Desulfovibrio vulgaris (Hildenborough) and their Role in Anaerobic Biocorrosion. Anaerobe, vol.1, no.6, 351-358.

  36. Mehanna, Maha, Basseguy, Regine, Delia, Marie-Line, Bergel, Alain. Role of direct microbial electron transfer in corrosion of steels. Electrochemistry communications, vol.11, no.3, 568-571.

  37. Water von Wolzogen Kuhr CAH 147 18 1934 The graphitization of cast iron as an electrobiochemical process in anaerobic soil von Wolzogen KuhrCAHvan der VlugtLS. 1934. The graphitization of cast iron as an electrobiochemical process in anaerobic soil. Water 18:147-165. 

  38. DANIELS, LACY, BELAY, NEGASH, RAJAGOPAL, BASAVAPATNA S., WEIMER, PAUL J.. Bacterial Methanogenesis and Growth from CO2 with Elemental Iron as the Sole Source of Electrons. Science, vol.237, no.4814, 509-511.

  39. Dinh, Hang T., Kuever, Jan, Mußmann, Marc, Hassel, Achim W., Stratmann, Martin, Widdel, Friedrich. Iron corrosion by novel anaerobic microorganisms. Nature, vol.427, no.6977, 829-832.

  40. Magot, M., Ravot, G., Campaignolle, X., Ollivier, B., Patel, B. K. C., Fardeau, M.-L., Thomas, P., Crolet, J.-L., Garcia, J.-L.. Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a New Anaerobic, Slightly Halophilic, Thiosulfate-Reducing Bacterium from Corroding Offshore Oil Wells. International journal of systematic bacteriology, vol.47, no.3, 818-824.

  41. Xu, D., Li, Y., Song, F., Gu, T.. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corrosion science, vol.77, 385-390.

  42. De Windt, Wim, Boon, Nico, Siciliano, Steven D., Verstraete, Willy. Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1. Environmental microbiology, vol.5, no.11, 1192-1202.

  43. Hubert, Casey, Nemati, Mehdi, Jenneman, Gary, Voordouw, Gerrit. Corrosion risk associated with microbial souring control using nitrate or nitrite. Applied microbiology and biotechnology, vol.68, no.2, 272-282.

  44. Nitrate-based souring mitigation of produced water-side effects and challenges from the Draugen produced water re-injection pilot, paper SPE Vik EA 106178 2007 VikEAJanbuAOGarsholFHenningeLBEngebretsenSKuijvenhovenCOliphantDHendriksWP. 2007. Nitrate-based souring mitigation of produced water-side effects and challenges from the Draugen produced water re-injection pilot, paper SPE 106178. SPE International Symposium on Oilfield Chemistry, Houston, TX. 

  45. Dowling, N. J. E., Brooks, S. A., Phelps, T. J., White, D. C.. Effects of selection and fate of substrates supplied to anaerobic bacteria involved in the corrosion of pipe-line steel. Journal of industrial microbiology, vol.10, no.3, 207-215.

  46. Abstr. NACE Corrosion 2010 Conf. Expo Larsen J 2010 LarsenJRasmussenKPedersenKSoerensenKLundgaardTSkovhusTL. 2010. Consortia of MIC bacteria and archaea causing pitting corrosion in top side oil production facilities, paper 10252. Abstr. NACE Corrosion 2010 Conf. Expo, Houston, TX. 

  47. Mori, Koji, Tsurumaru, Hirohito, Harayama, Shigeaki. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. Journal of bioscience and bioengineering, vol.110, no.4, 426-430.

  48. Uchiyama, Taku, Ito, Kimio, Mori, Koji, Tsurumaru, Hirohito, Harayama, Shigeaki. Iron-Corroding Methanogen Isolated from a Crude-Oil Storage Tank. Applied and environmental microbiology, vol.76, no.6, 1783-1788.

  49. Hamilton, W A. Sulphate-Reducing Bacteria and Anaerobic Corrosion. Annual review of microbiology, vol.39, 195-217.

  50. Lee, Whonchee, Lewandowski, Zbigniew, Nielsen, Per H, Hamilton, W Allan. Role of sulfate‐reducing bacteria in corrosion of mild steel: A review. Biofouling, vol.8, no.3, 165-194.

  51. Muyzer, Gerard, Stams, Alfons J. M.. The ecology and biotechnology of sulphate-reducing bacteria. Nature reviews. Microbiology, vol.6, no.6, 441-454.

  52. Bødtker, Gunhild, Thorstenson, Tore, Lillebø, Bente-Lise P., Thorbjørnsen, Bente E., Ulvøen, Rikke Helen, Sunde, Egil, Torsvik, Terje. The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. Journal of industrial microbiology & biotechnology, vol.35, no.12, 1625-1636.

  53. Li, Seon Yeob, Kim, Young Geun, Jeon, Kyung Soo, Kho, Young Tai. Microbiologically influenced corrosion of underground pipelines under the disbonded coatings. Metals and materials, vol.6, no.3, 281-286.

  54. Ferris, F. G., Jack, T. R., Bramhill, B. J.. Corrosion products associated with attached bacteria at an oil field water injection plant. Canadian journal of microbiology, vol.38, no.12, 1320-1324.

  55. Mater. Perform. Jack TR 19 34 1995 Indicator minerals formed during external corrosion of line pipe JackTRWilmottMJSutherbyRL. 1995. Indicator minerals formed during external corrosion of line pipe. Mater. Perform. 34:19-22. 

  56. Païssé, Sandrine, Ghiglione, Jean-François, Marty, Florence, Abbas, Ben, Gueuné, Hervé, Amaya, José Maria Sanchez, Muyzer, Gerard, Quillet, Laurent. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Applied microbiology and biotechnology, vol.97, no.16, 7493-7504.

  57. Abstr. NACE Corrosion 2000 Conf. Expo Nemati M 2000 NematiMVoordouwG. 2000. Identification and characterization of sulfate-reducing bacteria involved in microbially influenced corrosion in oil fields, paper 00126. Abstr. NACE Corrosion 2000 Conf. Expo, Orlando, FL. 

  58. T., Zhang, H., Fang. Phylogenetic diversity of a SRB-rich marine biofilm. Applied microbiology and biotechnology, vol.57, no.3, 437-440.

  59. Beese, P., Venzlaff, H., Srinivasan, J., Garrelfs, J., Stratmann, M., Mayrhofer, K.J.J.. Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation. Electrochimica acta, vol.105, 239-247.

  60. Gaines, Richard H.. Bacterial Activity as a Corrosive Influence in the Soil.. The Journal of industrial and engineering chemistry, vol.2, no.4, 128-130.

  61. von WOLZOGEN KUHR, C. A. H.. Unity of Anaerobic and Aerobic Iron Corrosion Process in the Soil. Corrosion, vol.17, no.6, 293t-299t.

  62. BUTLIN, K. R., ADAMS, MARY E., THOMAS, MARGARET. Sulphate-reducing Bacteria and Internal Corrosion of Ferrous Pipes conveying Water. Nature, vol.163, no.4131, 26-27.

  63. Horvàth, J., Solti, M.. Beitrag zum Mechanismus der anaeroben mikrobiologischen Korrosion der Metalle im Boden. Werkstoffe und Korrosion = Materials and corrosion, vol.10, no.10, 624-630.

  64. Starkey, Robert L.. Sulfate reduction and the anaerobic corrosion of iron. Antonie van Leeuwenhoek : International journal of general and molecular microbiology, vol.12, no.1, 193-203.

  65. SPRUIT, C. J. P., WANKLYN, J. N.. Iron/Sulphide Ratios in Corrosion by Sulphate-reducing Bacteria. Nature, vol.168, no.4283, 951-952.

  66. WANKLYN, J. N., SPRUIT, C. J. P.. Influence of Sulphate-reducing Bacteria on the Corrosion Potential of Iron. Nature, vol.169, no.4309, 928-929.

  67. Booth, G. H., Tiller, A. K.. Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Transactions of the Faraday Society, vol.56, 1689-1696.

  68. Booth, G. H., Tiller, A. K.. Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Part 3.—Halophilic organisms. Transactions of the Faraday Society, vol.58, 2510-2516.

  69. Tiller, A. K., Booth, G. H.. Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Part 2.—Thermophilic organisms. Transactions of the Faraday Society, vol.58, 110-115.

  70. J. Gen. Microbiol. Pankhania IP 3357 132 1986 Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough) PankhaniaIPMoosaviANHamiltonWA. 1986. Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough). J. Gen. Microbiol. 132:3357-3365. 

  71. Bryant, Richard D., Jansen, Wayne, Boivin, Joe, Laishley, Edward J., Costerton, J. William. Effect of Hydrogenase and Mixed Sulfate-Reducing Bacterial Populations on the Corrosion of Steel. Applied and environmental microbiology, vol.57, no.10, 2804-2809.

  72. Bryant, Richard D., Laishley, Edward J.. The role of hydrogenase in anaerobic biocorrosion. Canadian journal of microbiology, vol.36, no.4, 259-264.

  73. Hardy, J. A.. Utilisation of Cathodic Hydrogen by Sulphate-Reducing Bacteria. British corrosion journal : a publication of the Metals Society, vol.18, no.4, 190-193.

  74. Newman, R.C., Rumash, K., Webster, B.J.. The effect of pre-corrosion on the corrosion rate of steel in neutral solutions containing sulphide: relevance to microbially influenced corrosion. Corrosion science, vol.33, no.12, 1877-1884.

  75. Booth, G. H., Elford, Lynette, Wakerley, D. S.. Corrosion of Mild Steel by Sulphate-reducing Bacteria: An Alternative Mechanism. British corrosion journal : a publication of the Metals Society, vol.3, no.5, 242-245.

  76. KING, R. A., MILLER, J. D. A.. Corrosion by the Sulphate-reducing Bacteria. Nature, vol.233, no.5320, 491-492.

  77. King, R. A., Miller, J. D. A., Smith, J. S.. Corrosion of Mild Steel by Iron Sulphides. British corrosion journal : a publication of the Metals Society, vol.8, no.3, 137-141.

  78. Smith, J.S., Miller, J. D. A.. Nature of Sulphides and their Corrosive Effect on Ferrous Metals: A Review. British corrosion journal : a publication of the Metals Society, vol.10, no.3, 136-143.

  79. Newman, R. C., Webster, B. J., Kelly, R. G.. The electrochemistry of SRB corrosion and related inorganic phenomena.. ISIJ international, vol.31, no.2, 201-209.

  80. Corrosion 2007 Sun W 2007 A mechanistic model of H2S corrosion of mild steel, paper 07655 SunWNe?iS. 2007. A mechanistic model of H2S corrosion of mild steel, paper 07655. Corrosion 2007. http://www.corrosioncenter.ohiou.edu/nesic/papers/FullText/conference-91.pdf. 

  81. 10.1002/9780470872864.ch19 

  82. Microbial corrosion. Tiller AK 54 1983 TillerAK. 1983. Electrochemical aspects of corrosion: an overview, p 54-65. In Microbial corrosion. The Metals Society, Teddington, United Kingdom. 

  83. Biotechnology focus 3 Widdel F 277 1992 WiddelF. 1992. Microbial corrosion, p 277-318. In FinnRKPravePSchlingmannMCruegerWEsserKThauerRWagnerF (ed), Biotechnology focus 3. Hanser, Munich, Germany. 

  84. Venzlaff, H., Enning, D., Srinivasan, J., Mayrhofer, K.J.J., Hassel, A.W., Widdel, F., Stratmann, M.. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion science, vol.66, 88-96.

  85. 10.1017/CBO9780511541490.011 

  86. STETTER, KARL O., LAUERER, GERTA, THOMM, MICHAEL, NEUNER, ANNEMARIE. Isolation of Extremely Thermophilic Sulfate Reducers: Evidence for a Novel Branch of Archaebacteria. Science, vol.236, no.4803, 822-824.

  87. Duncan, Kathleen E., Gieg, Lisa M., Parisi, Victoria A., Tanner, Ralph S., Tringe, Susannah Green, Bristow, Jim, Suflita, Joseph M.. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities. Environmental science & technology, vol.43, no.20, 7977-7984.

  88. Islam, Shaer, Karr, Elizabeth A.. Examination of metal corrosion byDesulfomicrobium thermophilum, Archaeoglobus fulgidus,andMethanothermobacter thermautotrophicus. Bios, vol.84, no.2, 59-64.

  89. Miranda-Tello, Elizabeth, Fardeau, Marie-Laure, Fernández, Luis, Ramı́rez, Florina, Cayol, Jean-Luc, Thomas, Pierre, Garcia, Jean-Louis, Ollivier, Bernard. Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe, vol.9, no.2, 97-103.

  90. Feio, M. J.. Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. International journal of systematic and evolutionary microbiology, vol.54, no.5, 1747-1752.

  91. Sherar, B.W.A., Power, I.M., Keech, P.G., Mitlin, S., Southam, G., Shoesmith, D.W.. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corrosion science, vol.53, no.3, 955-960.

  92. Appia-Ayme, Corinne, Guiliani, Nicolas, Ratouchniak, Jeanine, Bonnefoy, Violaine. Characterization of an Operon Encoding Two c -Type Cytochromes, an aa 3 -Type Cytochrome Oxidase, and Rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Applied and environmental microbiology, vol.65, no.11, 4781-4787.

  93. Strycharz, S.M., Glaven, R.H., Coppi, M.V., Gannon, S.M., Perpetua, L.A., Liu, A., Nevin, K.P., Lovley, D.R.. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry, vol.80, no.2, 142-150.

  94. Butler, Jessica E, Young, Nelson D, Lovley, Derek R. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC genomics, vol.11, 40-40.

  95. Shi, Liang, Squier, Thomas C, Zachara, John M, Fredrickson, James K. Respiration of metal (hydr)oxides by Shewanella and Geobacter : a key role for multihaem c -type cytochromes. Molecular microbiology, vol.65, no.1, 12-20.

  96. Kato, Souichiro, Hashimoto, Kazuhito, Watanabe, Kazuya. Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences of the United States of America, vol.109, no.25, 10042-10046.

  97. Nakamura, Ryuhei, Kai, Fumiyoshi, Okamoto, Akihiro, Newton, Greg J., Hashimoto, Kazuhito. Self-Constructed Electrically Conductive Bacterial Networks. Angewandte Chemie. international edition, vol.48, no.3, 508-511.

  98. Nielsen, Lars Peter, Risgaard-Petersen, Nils, Fossing, Henrik, Christensen, Peter Bondo, Sayama, Mikio. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, vol.463, no.7284, 1071-1074.

  99. Pfeffer, Christian, Larsen, Steffen, Song, Jie, Dong, Mingdong, Besenbacher, Flemming, Meyer, Rikke Louise, Kjeldsen, Kasper Urup, Schreiber, Lars, Gorby, Yuri A., El-Naggar, Mohamed Y., Leung, Kar Man, Schramm, Andreas, Risgaard-Petersen, Nils, Nielsen, Lars Peter. Filamentous bacteria transport electrons over centimetre distances. Nature, vol.491, no.7423, 218-221.

  100. DEUTSCH, E. R., RAO, K. V., LAURENT, R., SEGUIN, M. K.. New evidence and possible origin of native iron in ophiolites of eastern Canada. Nature, vol.269, no.5630, 684-685.

  101. HAGGERTY, STEPHEN E., TOFT, PAUL B.. Native Iron in the Continental Lower Crust: Petrological and Geophysical Implications. Science, vol.229, no.4714, 647-649.

  102. Environmental microbe-metal interactions Cord-Ruwisch R 159 2000 Cord-RuwischR. 2000. Microbially influenced corrosion of steel, p 159-173. In LovleyDR (ed), Environmental microbe-metal interactions. ASM Press, Washington, DC. 

  103. Braun, Ferdinand. Ueber die Stromleitung durch Schwefelmetalle. Annalen der Physik und Chemie, vol.229, no.12, 556-563.

  104. Pearce, C. I., Pattrick, R. A. D., Vaughan, D. J.. Electrical and Magnetic Properties of Sulfides. Reviews in mineralogy and geochemistry, vol.61, no.1, 127-180.

  105. Pereira, Inês A. Cardoso, Ramos, Ana Raquel, Grein, Fabian, Marques, Marta Coimbra, da Silva, Sofia Marques, Venceslau, Sofia Santos. A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea. Frontiers in microbiology, vol.2, 69-.

  106. 10.1007/0-387-30742-7_22 

  107. Iofa, Z.A., Batrakov, V.V., Cho-Ngok-Ba. Influence of anion adsorption on the action of inhibitors on the acid corrosion of iron and cobalt. Electrochimica acta, vol.9, no.12, 1645-1653.

  108. Shoesmith, David W., Taylor, Peter, Bailey, M. Grant, Owen, Derrek G.. The Formation of Ferrous Monosulfide Polymorphs during the Corrosion of Iron by Aqueous Hydrogen Sulfide at 21°C. Journal of the Electrochemical Society : JES, vol.127, no.5, 1007-1015.

  109. Ma, Houyi, Cheng, Xiaoliang, Li, Guiqiu, Chen, Shenhao, Quan, Zhenlan, Zhao, Shiyong, Niu, Lin. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corrosion science, vol.42, no.10, 1669-1683.

  110. Wikjord, A.G., Rummery, T.E., Doern, F.E., Owen, D.G.. Corrosion and deposition during the exposure of carbon steel to hydrogen sulphide-water solutions. Corrosion science, vol.20, no.5, 651-671.

  111. Beech, I.B., Sunny Cheung, C.W., Patrick Chan, C.S., Hill, M.A., Franco, R., Lino, A.-R.. Study of parameters implicated in the biodeterioration of mild steel in the presence of different species of sulphate-reducing bacteria. International biodeterioration & biodegradation, vol.34, no.3, 289-303.

  112. Gaylarde, C.C.. Sulphate-reducing bacteria which do not induce accelerated corrosion. International biodeterioration & biodegradation, vol.30, no.4, 331-338.

  113. 10.1002/9780470872864.ch15 

  114. Radkevych, O. I.; Pokhmurs'kyi, V. I. etc. "Influence of Hydrogen Sulfide on Serviceability of Materials of Gas Field Equipment." Materials science, v.37 no.2 (2001), pp. 319-332, doi:10.1023/A:1013275129001.

  115. Hansson, E.B., Odziemkowski, M.S., Gillham, R.W.. Formation of poorly crystalline iron monosulfides: Surface redox reactions on high purity iron, spectroelectrochemical studies. Corrosion science, vol.48, no.11, 3767-3783.

  116. Adams, Mary E., Farrer, T. W.. The influence of ferrous iron on bacterial corrosion. Journal of applied chemistry, vol.3, no.3, 117-120.

  117. Lee, W., Characklis, W. G.. Corrosion of Mild Steel Under Anaerobic Biofilm. Corrosion, vol.49, no.3, 186-199.

  118. Mara, D. D., Williams, D. J. A.. Polarisation of Pure Iron in the Presence of Iron Sulphide Minerals. British corrosion journal : a publication of the Metals Society, vol.7, no.2, 94-95.

  119. C. R. Hebd. Seances Acad. Sci. Stumper R 1316 176 1923 Inorganic chemistry: the corrosion of iron in the presence of iron sulphuret StumperR. 1923. Inorganic chemistry: the corrosion of iron in the presence of iron sulphuret. C. R. Hebd. Seances Acad. Sci. 176:1316-1317. 

  120. Bell, R. G., Lim, Chor Kiang. Corrosion of mild and stainless steel by four tropical Desulfovibrio desulfuricans strains. Canadian journal of microbiology, vol.27, no.2, 242-245.

  121. Macdonald, D.D., Roberts, B., Hyne, J.B.. Corrosion of carbon steel during cyclical exposure to wet elemental sulphur and the atmosphere. Corrosion science, vol.18, no.5, 499-501.

  122. Nielsen, Per Halkjær, Lee, Whonchee, Lewandowski, Zbigniew, Morison, Mike, Characklis, William G.. Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling, vol.7, no.4, 267-284.

  123. Mater. Perform. Schaschl E 9 19 1980 Elemental sulfur as a corrodent in deaerated, neutral aqueous solutions SchaschlE. 1980. Elemental sulfur as a corrodent in deaerated, neutral aqueous solutions. Mater. Perform. 19:9-12. 

  124. Ludwig, Wolfgang, Strunk, Oliver, Westram, Ralf, Richter, Lothar, Meier, Harald, Yadhukumar,, Buchner, Arno, Lai, Tina, Steppi, Susanne, Jobb, Gangolf, Förster, Wolfram, Brettske, Igor, Gerber, Stefan, Ginhart, Anton W., Gross, Oliver, Grumann, Silke, Hermann, Stefan, Jost, Ralf, König, Andreas, Liss, Thomas, Lüßmann, Ralph, May, Michael, Nonhoff, Björn, Reichel, Boris, Strehlow, Robert, Stamatakis, Alexandros, Stuckmann, Norbert, Vilbig, Alexander, Lenke, Michael, Ludwig, Thomas, Bode, Arndt, Schleifer, Karl‐Heinz. ARB: a software environment for sequence data. Nucleic acids research, vol.32, no.4, 1363-1371.

  125. Pruesse, Elmar, Quast, Christian, Knittel, Katrin, Fuchs, Bernhard M., Ludwig, Wolfgang, Peplies, Jörg, Glöckner, Frank Oliver. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic acids research, vol.35, no.21, 7188-7196.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로