$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Flutter-driven triboelectrification for harvesting wind energy 원문보기

Nature communications, v.5, 2014년, pp.4929 -   

Bae, Jihyun (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, Korea) ,  Lee, Jeongsu (Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea) ,  Kim, SeongMin (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, Korea) ,  Ha, Jaewook (Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea) ,  Lee, Byoung-Sun (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, Korea) ,  Park, YoungJun (DMC R&D Center, Samsung Electronics Co. Ltd., 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742, Korea) ,  Choong, Chweelin (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, Korea) ,  Kim, Jin-Baek (Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea) ,  Wang, Zhong Lin (Georgia) ,  Kim, Ho-Young ,  Park, Jong-Jin ,  Chung, U-In

Abstract AI-Helper 아이콘AI-Helper

Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the self-sustained oscillation o...

참고문헌 (35)

  1. Nature J Knight 430 12 2004 10.1038/430012a Knight, J. Urban wind power: breezing into town. Nature 430, 12-13 (2004). 

  2. Energ. Econ. T Traber 33 249 2011 10.1016/j.eneco.2010.07.002 Traber, T. & Kemfert, C. Gone with the wind?-electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply. Energ. Econ. 33, 249-256 (2011). 

  3. Adv. Funct. Mater. S Lee 23 2445 2013 10.1002/adfm.201202867 Lee, S. et al. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Funct. Mater. 23, 2445-2449 (2013). 

  4. J. Fluid. Struct. O Doaré 27 1357 2011 10.1016/j.jfluidstructs.2011.04.008 Doaré, O. & Michelin, S. Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency. J. Fluid. Struct. 27, 1357-1375 (2011). 

  5. Sensor. Actuat. A Phys. F Fei 173 163 2012 10.1016/j.sna.2011.06.015 Fei, F., Mai, J. D. & Li, W. J. A wind-flutter energy converter for powering wireless sensors. Sensor. Actuat. A Phys. 173, 163-171 (2012). 

  6. Appl. Phys. Res. J Peng 4 1 2012 10.5539/apr.v4n2p1 Peng, J. & Chen, S. G. Flow-oscillating structure interactions and the applications to propulsion and energy harvest. Appl. Phys. Res. 4, 1-14 (2012). 

  7. Energ.Environ. Sci. R Zhang 5 8528 2012 10.1039/c2ee22354f Zhang, R. et al. Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection. Energ.Environ. Sci. 5, 8528-8533 (2012). 

  8. Angew. Chem. Int. Ed. LS McCarty 47 2188 2008 10.1002/anie.200701812 McCarty, L. S. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188-2207 (2008). 

  9. Adv. Mater. S Niu 25 6184 2013 10.1002/adma.201302808 Niu, S. et al. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25, 6184-6192 (2013). 

  10. Nano Lett. L Lin 13 2916 2013 10.1021/nl4013002 Lin, L. et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916-2923 (2013). 

  11. ACS Nano G Cheng 7 7383 2013 10.1021/nn403151t Cheng, G., Lin, Z.-H., Lin, L., Du, Z.-l. & Wang, Z. L. Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 7, 7383-7391 (2013). 

  12. Nano Lett. S Wang 12 6339 2012 10.1021/nl303573d Wang, S., Lin, L. & Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339-6346 (2012). 

  13. Nano Lett. S Wang 13 2226 2013 10.1021/nl400738p Wang, S. et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226-2233 (2013). 

  14. Nano Res. W Yang 6 880 2013 10.1007/s12274-013-0364-0 Yang, W. et al. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 6, 880-886 (2013). 

  15. Nano Lett. X-S Zhang 13 1168 2013 10.1021/nl3045684 Zhang, X.-S. et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13, 1168-1172 (2013). 

  16. ACS Nano Y Yang 7 9461 2013 10.1021/nn4043157 Yang, Y. et al. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7, 9461-9468 (2013). 

  17. ACS Nano Y Xie 7 7119 2013 10.1021/nn402477h Xie, Y. et al. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7, 7119-7125 (2013). 

  18. Nat. Commun. G Zhu 5 3426 2014 10.1038/ncomms4426 Zhu, G., Chen, J., Zhang, T., Jing, Q. & Wang, Z. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014). 

  19. Chinese Phys. Lett. C-Y Boa 27 064601 2010 10.1088/0256-307X/27/6/064601 Boa, C.-Y., Chao, T., Yin, X.-Z. & Lu, X.-Y. Flutter of finite-span flexible plates in uniform flow. Chinese Phys. Lett. 27, 064601 (2010). 

  20. Proc. Natl Acad. Sci. USA M Argentina 102 1829 2005 10.1073/pnas.0408383102 Argentina, M. & Mahadevan, L. Fluid-flow-induced flutter of a flag. Proc. Natl Acad. Sci. USA 102, 1829-1834 (2005). 

  21. J.Fluid Mech. W-X Hung 653 301 2010 10.1017/S0022112010000248 Hung, W.-X. & Sung, H. J. Three-dimensional simulation of a flapping flag in a uniform flow. J.Fluid Mech. 653, 301-336 (2010). 

  22. J. Aircraft F Liu 38 334 2001 10.2514/2.2766 Liu, F., Cai, J., Zhu, Y., Tsai, H. M. & Wong, A. S. F. Calculation of wing flutter by a coupled fluid-structure method. J. Aircraft 38, 334-342 (2001). 

  23. Phys. Fluids Z Pang 22 121701 2010 10.1063/1.3525920 Pang, Z., Jia, L.-b. & Yin, X.-z. Flutter instability of rectangle and trapezoid flags in uniform flow. Phys. Fluids 22, 121701 (2010). 

  24. Phys. Fluids L Schouveiler 21 081703 2009 10.1063/1.3204672 Schouveiler, L. & Eloy, C. Coupled flutter of parallel plates. Phys. Fluids 21, 081703 (2009). 

  25. Annu. Rev. Fluid Mech. MJ Shelley 43 449 2011 10.1146/annurev-fluid-121108-145456 Shelley, M. J. & Zhang, J. Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449-465 (2011). 

  26. Phys. Fluids F-B Tian 23 111903 2011 10.1063/1.3659892 Tian, F.-B., Luo, H., Zhu, L. & Lu, X.-Y. Coupling modes of three filaments in side-by-side arrangement. Phys. Fluids 23, 111903 (2011). 

  27. J. Phys. Soc. Jpn S Taneda 24 392 1968 10.1143/JPSJ.24.392 Taneda, S. Waving motions of flags. J. Phys. Soc. Jpn 24, 392-401 (1968). 

  28. Nature J Zhang 408 835 2000 10.1038/35048530 Zhang, J., Childress, S., Libchaber, A. & Shelley, M. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835-839 (2000). 

  29. J. Fluid. Struct. E Virot 43 385 2013 10.1016/j.jfluidstructs.2013.09.012 Virot, E., Amandolese, X. & Hémon, P. Fluttering flags: an experimental study of fluid forces. J. Fluid. Struct. 43, 385-401 (2013). 

  30. J. Sound Vibration L Tang 326 263 2009 10.1016/j.jsv.2009.04.041 Tang, L., Païdoussis, M. & Jiang, J. Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter-mill. J. Sound Vibration 326, 263-276 (2009). 

  31. J. Sound Vibration L Tang 305 97 2007 10.1016/j.jsv.2007.03.042 Tang, L. & Païdoussis, M. On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vibration 305, 97-115 (2007). 

  32. J. Fluid Mech. C Eloy 691 583 2012 10.1017/jfm.2011.494 Eloy, C., Kofman, N. & Schouveiler, L. The origin of hysteresis in the flag instability. J. Fluid Mech. 691, 583-595 (2012). 

  33. Nano Lett. G Zhu 13 2282 2013 10.1021/nl4008985 Zhu, G. et al. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13, 2282-2289 (2013). 

  34. Nano Lett. F-R Fan 12 3109 2012 10.1021/nl300988z Fan, F.-R. et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109-3114 (2012). 

  35. Nano Lett. G Zhu 13 847 2013 10.1021/nl4001053 Zhu, G. et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13, 847-853 (2013). 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로