$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of nitrogen doping from pyrolyzed ionic liquid in carbon nanotube fibers: enhanced mechanical and electrical properties

Nanotechnology, v.26 no.7, 2015년, pp.075706 -   

Park, Ok-Kyung ,  Kim, Hwa Jung ,  Hwang, Jun Yeon ,  Kim, Seung Min ,  Jeong, Youngjin ,  Lee, Jae Kwan ,  Ku, Bon-Cheol

Abstract AI-Helper 아이콘AI-Helper

Nitrogen doping in carbon nanotube (CNT) fibers using pyrolyzed ionic liquid induced interfacial hydrogen bonding between individual CNTs, enhancing mechanical properties and electrical conductivity simultaneously. In particular, the nitrogen doped CNT fiber using the ionic liquid BMI-I exhibited ab...

참고문헌 (38)

  1. [1] Demczyk B G, Wang Y M, Cumings J, Hetman M, Han W, Zettl A and Ritchie R O 2002 Direct mechanical measurement of the tensile strength and elastic modulus of multi walled carbon nanotubes Mater. Sci. Eng. A 334 173–8 10.1016/S0921-5093(01)01807-X Direct mechanical measurement of the tensile strength and elastic modulus of multi walled carbon nanotubes Demczyk B G, Wang Y M, Cumings J, Hetman M, Han W, Zettl A and Ritchie R O Mater. Sci. Eng. 0921-5093 334 A 2002 173 178 

  2. [2] Yu M F, Files B S, Arepalli S and Ruoff R S 2000 Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties Phys. Rev. Lett. 84 5552–5 10.1103/PhysRevLett.84.5552 Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties Yu M F, Files B S, Arepalli S and Ruoff R S Phys. Rev. Lett. 84 2000 5552 5555 

  3. [3] Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F and Thio T 1996 Electrical conductivity of individual carbon nanotubes Nature 384 54–6 10.1038/382054a0 Electrical conductivity of individual carbon nanotubes Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F and Thio T Nature 384 1996 54 56 

  4. [4] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Measuring the thermal conductivity of single carbon nanotube Phys. Rev. Lett. 95 065502 10.1103/PhysRevLett.95.065502 Measuring the thermal conductivity of single carbon nanotube Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T Phys. Rev. Lett. 95 065502 2005 

  5. [5] Zhang X et al 2007 Ultra strong, stiff, and light weight carbon-nanotube fibers Adv. Mater. 19 4198–201 10.1002/adma.200700776 Ultra strong, stiff, and light weight carbon-nanotube fibers Zhang X et al Adv. Mater. 19 2007 4198 4201 

  6. [6] Sun Y-P, Fu K, Lin Y and Huang W 2002 Functionalized carbon nanotubes: properties and applications Acc. Chem. Res. 35 1096–104 10.1021/ar010160v Functionalized carbon nanotubes: properties and applications Sun Y-P, Fu K, Lin Y and Huang W Acc. Chem. Res. 0001-4842 35 2002 1096 1104 

  7. [7] Lin Y, Meziani M J and Sun Y-P 2007 Functionalized carbon nanotube for polymeric nanocomposites J. Mater. Chem. 17 1143–8 10.1039/b618344a Functionalized carbon nanotube for polymeric nanocomposites Lin Y, Meziani M J and Sun Y-P J. Mater. Chem. 17 2007 1143 1148 

  8. [8] Li Y and Kröger M A 2012 Theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of bucky paper Carbon 50 1793–806 10.1016/j.carbon.2011.12.027 Theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of bucky paper Li Y and Kröger M A Carbon 50 2012 1793 1806 

  9. [9] Lu W, Zu M, Byun J-H, Kim B-S and Chou T-W 2012 State of the art of carbon nanotube fibers: opportunities and challenges Adv. Mater. 24 1805–33 10.1002/adma.201104672 State of the art of carbon nanotube fibers: opportunities and challenges Lu W, Zu M, Byun J-H, Kim B-S and Chou T-W Adv. Mater. 24 2012 1805 1833 

  10. [10] Zhang M, Atkinson K R and Baughman R H 2004 Multifunctional carbon nanotube yarns by downsizing an ancient technology Science 306 1358–61 10.1126/science.1104276 Multifunctional carbon nanotube yarns by downsizing an ancient technology Zhang M, Atkinson K R and Baughman R H Science 306 2004 1358 1361 

  11. [11] Ci L, Li Y, Wei B, Liang W, Xu C and Wu D 2000 Preparation of carbon nanofibers by floating catalyst method Carbon 38 1933–7 10.1016/S0008-6223(00)00030-0 Preparation of carbon nanofibers by floating catalyst method Ci L, Li Y, Wei B, Liang W, Xu C and Wu D Carbon 38 2000 1933 1937 

  12. [12] Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K and Kaski K 2004 Mechanical properties of carbon nanotubes with vacancies and related defects Phys. Rev. B 70 245416 10.1103/PhysRevB.70.245416 Mechanical properties of carbon nanotubes with vacancies and related defects Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K and Kaski K Phys. Rev. 70 B 245416 2004 

  13. [13] Nardelli M B, Fattebert J-L, Orlikowski F D, Roland C, Zhao Q and Bernholc J 2000 Mechanical properties, defects and electronic behavior of carbon nanotubes Carbon 38 1703–11 10.1016/S0008-6223(99)00291-2 Mechanical properties, defects and electronic behavior of carbon nanotubes Nardelli M B, Fattebert J-L, Orlikowski F D, Roland C, Zhao Q and Bernholc J Carbon 38 2000 1703 1711 

  14. [14] Li Q et al 2007 Structure-dependent electrical properties of carbon nanotube fibers Adv. Mater. 19 3358–63 10.1002/adma.200602966 Structure-dependent electrical properties of carbon nanotube fibers Li Q et al Adv. Mater. 19 2007 3358 3363 

  15. [15] Krasheninnikov A V and Banhart F 2007 Engineering of nanostructured carbon materials with electron or ion beams Nat. Mater. 6 723–33 10.1038/nmat1996 Engineering of nanostructured carbon materials with electron or ion beams Krasheninnikov A V and Banhart F Nat. Mater. 6 2007 723 733 

  16. [16] Miao M, Hawkins S C, Cai J Y, Gengenbach T R, Knott R and Huynh C P 2011 Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns Carbon 49 4940–7 10.1016/j.carbon.2011.07.026 Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns Miao M, Hawkins S C, Cai J Y, Gengenbach T R, Knott R and Huynh C P Carbon 49 2011 4940 4947 

  17. [17] Cai J Y, Min J, McDonnell J, Church J S, Easton C D, Humphries W, Lucas S and Woodhead A L 2012 An improved method for functionalization of carbon nanotube spun yarns with aryldiazonium compounds Carbon 50 4655–62 10.1016/j.carbon.2012.05.055 An improved method for functionalization of carbon nanotube spun yarns with aryldiazonium compounds Cai J Y, Min J, McDonnell J, Church J S, Easton C D, Humphries W, Lucas S and Woodhead A L Carbon 50 2012 4655 4662 

  18. [18] Choi Y-M, Choo H, Yeo H, You N-H, Lee D-S, Ku B-C, Kim H C, Bong P-H, Jeong Y and Goh M J 2013 Chemical method for improving both the electrical conductivity and mechanical properties of carbon nanotube yarn via intramolecular cross-dehydrogenative coupling ACS Appl. Mater. Interfaces 5 7726–30 10.1021/am4026104 Chemical method for improving both the electrical conductivity and mechanical properties of carbon nanotube yarn via intramolecular cross-dehydrogenative coupling Choi Y-M, Choo H, Yeo H, You N-H, Lee D-S, Ku B-C, Kim H C, Bong P-H, Jeong Y and Goh M J ACS Appl. Mater. Interfaces 5 2013 7726 7730 

  19. [19] Cipriano B H, Kota A K, Gershon A L, Laskowski C J, Kashiwagi T, Bruck H A and Raghavan S R 2008 Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing Polymer 49 4846–51 10.1016/j.polymer.2008.08.057 Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing Cipriano B H, Kota A K, Gershon A L, Laskowski C J, Kashiwagi T, Bruck H A and Raghavan S R Polymer 49 2008 4846 4851 

  20. [20] Sa Y J, Park C, Jeong H Y, Park S-H, Lee Z, Kim K T, Park G-G and Joo S H 2014 Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cell Angew. Chem. 126 4186–90 10.1002/ange.201307203 Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cell Sa Y J, Park C, Jeong H Y, Park S-H, Lee Z, Kim K T, Park G-G and Joo S H Angew. Chem. 126 2014 4186 4190 

  21. [21] Xing H J, Huang B, Li Z Y, Wei S-H, Yang J L and Cong X G 2012 Ordered semiconducting nitrogen-graphene alloys Phys. Rev. X 2 011003 10.1103/PhysRevX.2.011003 Ordered semiconducting nitrogen-graphene alloys Xing H J, Huang B, Li Z Y, Wei S-H, Yang J L and Cong X G Phys. Rev. 2 X 011003 2012 

  22. [22] Hamid R B, Eduardo G-E, Tica S, Florian N and Thomas W 2013 Nitrogen doping mechanism in small diameter single-walled carbon nanotubes: impact on electronic properties and growth selectivity J. Phys. Chem. C 117 25805–16 10.1021/jp409518m Nitrogen doping mechanism in small diameter single-walled carbon nanotubes: impact on electronic properties and growth selectivity Hamid R B, Eduardo G-E, Tica S, Florian N and Thomas W J. Phys. Chem. 1932-7447 117 C 2013 25805 25816 

  23. [23] Lu J, Yang L, Xu B, Wu Q, Zhang D, Yuan S, Zhai Y, Wang X, Fan Y and Hu Z 2014 Promotion effect of nitrogen doping into carbon naotubes on supported iron fischer-tropsch catalysts for lower olefins ACS Catal. 4 613–21 10.1021/cs400931z Promotion effect of nitrogen doping into carbon naotubes on supported iron fischer-tropsch catalysts for lower olefins Lu J, Yang L, Xu B, Wu Q, Zhang D, Yuan S, Zhai Y, Wang X, Fan Y and Hu Z ACS Catal. 4 2014 613 621 

  24. [24] Wang H, Maiyalagan T and Wang X 2012 Review on resent progress in nitrogen-doped graphene: synthesis, characterization, and its potential application ACS Catal. 2 781–94 10.1021/cs200652y Review on resent progress in nitrogen-doped graphene: synthesis, characterization, and its potential application Wang H, Maiyalagan T and Wang X ACS Catal. 2 2012 781 794 

  25. [25] Bhunia P, Hwang E, Yoon Y, Lee E, Seo S and Lee H 2012 Synthesis of highly n-type graphene by using an ionic liquid Chem. Eur. J. 18 12207–12 10.1002/chem.201201593 Synthesis of highly n-type graphene by using an ionic liquid Bhunia P, Hwang E, Yoon Y, Lee E, Seo S and Lee H Chem. Eur. J. 0947-6539 18 2012 12207 12212 

  26. [26] Liu J-Y, Chang H-Y, Truong Q D and Ling Y-C 2013 Synthesis of nitrogen-doped graphene by pyrolysis of ionic-liquid-functionalized graphene J. Mater. Chem. C 1 1713–6 10.1039/c3tc00191a Synthesis of nitrogen-doped graphene by pyrolysis of ionic-liquid-functionalized graphene Liu J-Y, Chang H-Y, Truong Q D and Ling Y-C J. Mater. Chem. 1 C 2013 1713 1716 

  27. [27] Song J, Kim S, Yoon S, Cho D and Jeong Y 2014 Enhanced spinnability of carbon nanotube fibers by surfactant addition Fibers polym. 15 762–6 10.1007/s12221-014-0762-2 Enhanced spinnability of carbon nanotube fibers by surfactant addition Song J, Kim S, Yoon S, Cho D and Jeong Y Fibers polym. 15 2014 762 766 

  28. [28] Lee J K and Kim M-J 2002 Ionic liquid-coated enzyme for biocatalysis inorganic solvent J. Org. Chem. 67 6845–7 10.1021/jo026116q Ionic liquid-coated enzyme for biocatalysis inorganic solvent Lee J K and Kim M-J J. Org. Chem. 67 2002 6845 6847 

  29. [29] Park S-J and Kim K-S 2010 Microscopy: Science, Technology, Applications and Education (Spain: A Formatex research center-C) pp 1905–16 Park S-J and Kim K-S Microscopy: Science, Technology, Applications and Education 2010 1905 1916 

  30. [30] Peng H, Mo Z, Liao S, Liang H, Wang L, Luo F, Song H, Zhong Y and Zhang B 2013 High performance Fe- and N-doepd carbon catalyst with graphene structure for oxygen reduction Sci. Rep. 3 1765 10.1038/srep01765 High performance Fe- and N-doepd carbon catalyst with graphene structure for oxygen reduction Peng H, Mo Z, Liao S, Liang H, Wang L, Luo F, Song H, Zhong Y and Zhang B Sci. Rep. 3 2013 1765 

  31. [31] Balevicius V, Bariseviciute R, Aidas K, Svoboda I, Ehrenberg H and Fuess H 2007 Proton transter in hydrogen-bonded pyridine/acid systems: the role of higher aggregation Phys. Chem. Chem. Phys. 9 3181–9 10.1039/b701775h Proton transter in hydrogen-bonded pyridine/acid systems: the role of higher aggregation Balevicius V, Bariseviciute R, Aidas K, Svoboda I, Ehrenberg H and Fuess H Phys. Chem. Chem. Phys. 1463-9076 9 2007 3181 3189 

  32. [32] Wu T, Frydrych M, O’Kelly K and Chen B 2014 Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects Biomacromolecules 15 2663–71 10.1021/bm500507z Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects Wu T, Frydrych M, O’Kelly K and Chen B Biomacromolecules 15 2014 2663 2671 

  33. [33] Graupner R 2007 Raman spectroscopy of covalently functionalized single-wall carbon nanotubes J. Raman Spectrosc. 38 673–83 10.1002/jrs.1694 Raman spectroscopy of covalently functionalized single-wall carbon nanotubes Graupner R J. Raman Spectrosc. 38 2007 673 683 

  34. [34] Park O-K, Lee S, Joh H-I, Kim J K, Kang P-H and Lee J H 2012 Effect of functional groups of carbon nanotubes on the cyclization mechanism of Polyacrylonitrile (PAN) Polymer 53 2168–74 10.1016/j.polymer.2012.03.031 Effect of functional groups of carbon nanotubes on the cyclization mechanism of Polyacrylonitrile (PAN) Park O-K, Lee S, Joh H-I, Kim J K, Kang P-H and Lee J H Polymer 53 2012 2168 2174 

  35. [35] Park O-K, Hahm M G, Lee S, Joh H-I, Na S-I, Vajtai R, Lee J H, Ku B-C and Ajayan P M 2012 In situ synthesis of thermochemically reduced grapheme oxide conducting nanocomposites Nano Lett. 12 1789–93 10.1021/nl203803d In situ synthesis of thermochemically reduced grapheme oxide conducting nanocomposites Park O-K, Hahm M G, Lee S, Joh H-I, Na S-I, Vajtai R, Lee J H, Ku B-C and Ajayan P M Nano Lett. 12 2012 1789 1793 

  36. [36] Ganesan Y, Peng C, Lu Y, Ci L, Srivastava A, Ajayan P M and Lou J 2010 Effect of nitrogen doping on the mechanical properties of carbon nanotubes ACS Nano 4 7637–43 10.1021/nn102372w Effect of nitrogen doping on the mechanical properties of carbon nanotubes Ganesan Y, Peng C, Lu Y, Ci L, Srivastava A, Ajayan P M and Lou J ACS Nano 4 2010 7637 7643 

  37. [37] Moon I K, Lee J, Ruoff R S and Lee H Y 2010 Reduced grapheme oxide by chemical graphitization Nat. Commun. 1 73 10.1038/ncomms1067 Reduced grapheme oxide by chemical graphitization Moon I K, Lee J, Ruoff R S and Lee H Y Nat. Commun. 1 2010 73 

  38. [38] Bekyarova E, Sarkar S, Wang F, Itkis M E, Kalinina I, Tian X and Haddon R C 2013 Effect of covalent chemistry on the electronic structure and properties of carbon nanotube and graphene Acc. Chem. Res. 46 65–76 10.1021/ar300177q Effect of covalent chemistry on the electronic structure and properties of carbon nanotube and graphene Bekyarova E, Sarkar S, Wang F, Itkis M E, Kalinina I, Tian X and Haddon R C Acc. Chem. Res. 0001-4842 46 2013 65 76 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로