$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Short-chain branching distribution oriented model development for Borstar bimodal polyethylene process and its correlation with product performance of slow crack growth

Chemical engineering science, v.130, 2015년, pp.41 - 55  

Tian, Z. ,  Chen, K.R. ,  Liu, B.P. ,  Luo, N. ,  Du, W.L. ,  Qian, F.

Abstract AI-Helper 아이콘AI-Helper

This work aims to develop a model that can predict the short-chain branching distribution (SCBD) of bimodal polyethylene (BPE) for an industrial Borstar process and correlate it with an updated structure-performance model (SPM) to estimate the slow crack growth (SCG) performance of the product. To c...

주제어

참고문헌 (62)

  1. Polym. Eng. Sci. Early View Adib 2014 The effect of microstructure on the slow crack growth resistance in polyethylene resins 

  2. Chem. Eng. J. Alizadeh 97 27 2004 10.1016/S1385-8947(03)00133-5 Modeling of fluidized bed reactor of ethylene polymerization 

  3. Macromol. React. Eng. Al-Saleh 5 587 2011 10.1002/mren.201100053 The integrated deconvolution estimation model: estimation of reactivity ratios per site type for ethylene/1-butene copolymers made with a heterogeneous Ziegler-Natta catalyst 

  4. Macromol. React. Eng. Al-Saleh 6 189 2012 10.1002/mren.201100079 The integrated deconvolution estimation model: effect of inter-laboratory 13C NMR analysis on IDEM performance 

  5. Macromol. Symp. Alt 163 135 2001 10.1002/1521-3900(200101)163:1<135::AID-MASY135>3.0.CO;2-7 Bimodal polyethylene-interplay of catalyst and process 

  6. Adv. Mater. Bohm 4 234 1992 10.1002/adma.19920040317 High-density polyethylene pipe resins 

  7. Angew. Chem. Int. Ed. Bohm 42 5010 2003 10.1002/anie.200300580 The ethylene polymerization with Ziegler catalysts: fifty years after the discovery 

  8. Polymer Cazenave 47 3904 2006 10.1016/j.polymer.2006.03.094 Short-term mechanical and structural approaches for the evaluation of polyethylene stress crack resistance 

  9. Macromol. React. Eng. Chadwick 3 428 2009 10.1002/mren.200900043 Polyolefins-catalyst and process innovations and their impact on polymer properties 

  10. CIESC J Chen 65 1978 2014 Application of PC-SAFT with updated binary interaction parameters in phase equilibrium calculation for supercritical ethylene coordination polymerization system 

  11. Ind. Eng. Chem. Res. Chen 53 19905 2014 10.1021/ie503456e Modeling and simulation of Borstar bimodal polyethylene process based on a rigorous PC-SAFT equation of state model 

  12. Chem. Eng. Sci. Covezzi 56 4059 2001 10.1016/S0009-2509(01)00077-X The multizone circulating reactor technology 

  13. Polymer Deblieck 52 2979 2011 10.1016/j.polymer.2011.03.055 Failure mechanisms in polyolefines: the role of crazing, shear yielding and the entanglement network 

  14. Polym. Eng. Sci. DesLauriers 45 1203 2005 10.1002/pen.20390 A comparative study of multimodal vs. bimodal polyethylene pipe resins for PE-100 applications 

  15. J. Polym. Sci. Polym. Chem. Deslauriers 45 3135 2007 10.1002/pola.22174 Short chain branching profiles in polyethylene from the Phillips Cr/silica catalyst 

  16. Macromol. Symp. DesLauriers 282 136 2009 10.1002/masy.200950814 Estimating slow crack growth performance of polyethylene resins from primary structures such as molecular weight and short chain branching 

  17. DesLauriers, P.J., Rohlfing, D.C., 2010. Method for Employing SEC-FTIR Data to Predict Mechanical Properties of Polyethylene. US 7803629 B2. 

  18. DesLauriers, P.J., Rohlfing, D.C., 2011. System and Method for Estimating Density of a Polymer. US 0035193 A1. 

  19. J. Appl. Polym. Sci. Garcia 121 3269 2011 10.1002/app.33911 Effects of the structural components on slow crack growth process in polyethylene blends. Composition intervals prediction for pipe applications 

  20. Macromol. React. Eng. Gemoets 4 109 2010 10.1002/mren.200900055 Kinetic study of ethylene homopolymerization in slurry using a Ziegler-Natta catalyst 

  21. CIESC J. Gu 64 649 2013 Optimization of ethylene slurry polymerization conditions based on molecular weight distribution 

  22. J. Mater. Sci. Huang 23 3648 1988 10.1007/BF00540508 The effect of molecular weight on slow crack slow growth in linear polyethylene homopolymers 

  23. J. Polym. Sci. Polym. Phys. Huang 29 129 1991 10.1002/polb.1991.090290116 Denpendence of slow crack growth in polyethylene on butyl branch density-morphology and theory 

  24. Polymer Hubert 42 8425 2001 10.1016/S0032-3861(01)00351-2 Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. I. Microstructure and crystallisation kinetics 

  25. J. Appl. Polym. Sci. Hubert 84 2308 2002 10.1002/app.10538 Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. II. Short-term creep of isotropic and drawn materials 

  26. Ind. Eng. Chem. Res. Jiang 52 2501 2013 10.1021/ie301971k Advanced catalyst technology for broad/bimodal polyethylene, achieved by polymer-coated particles supporting hybrid catalyst 

  27. Ind. Eng. Chem. Res. Khare 41 5601 2002 10.1021/ie020451n Steady-state and dynamic modeling of commercial slurry high-density polyethylene (HDPE) processes 

  28. Ind. Eng. Chem. Res. Khare 43 884 2004 10.1021/ie030714t Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors 

  29. Chem. Eng. Technol. Kiashemshaki 27 1227 2004 10.1002/ceat.200401964 Reactor modeling of gas-phase polymerization of ethylene 

  30. J. Process. Control Kiparissides 16 205 2006 10.1016/j.jprocont.2005.06.004 Challenges in particulate polymerization reactor modeling and optimization: a population balance perspective 

  31. Macromolecules Krishnaswamy 41 1693 2008 10.1021/ma070454h Effect of the distribution of short-chain branches on crystallization kinetics and mechanical properties of high-density polyethylene 

  32. Macromolecules Kurek 46 9197 2013 10.1021/ma401971c Silica nanofoam (NF) supported single- and dual-site catalysts for ethylene polymerization with morphology control and tailored bimodal molar mass distributions 

  33. Ind. Eng. Chem. Res. Li 53 1088 2014 10.1021/ie403315v Bimodal/broad polyethylene prepared in a disentangled state 

  34. Eur. Polym. J. Liu 49 1823 2013 10.1016/j.eurpolymj.2013.04.008 Synthesis of molecular weight controllable bimodal polyethylene from fluorinated FI-Ti catalyst coupled with ZnEt2 

  35. Chem. Eng. J. Luo 149 370 2009 10.1016/j.cej.2009.01.021 Steady-state and dynamic modeling of commercial bulk polypropylene process of Hypol technology 

  36. AIChE J. McAuley 36 837 1990 10.1002/aic.690360605 A kinetic model for industrial gas-phase ethylene polymerization 

  37. Chem. Eng. Sci. McAuley 49 2035 1994 10.1016/0009-2509(94)E0030-T A comparison of two-phase and well-mixed models for fluidized-bed reactors 

  38. Chin. J. Chem. Eng. Meng 21 850 2013 10.1016/S1004-9541(13)60553-4 Modeling and simulation of ethylene polymerization in industrial slurry reactor series 

  39. J. Polym. Sci. Polym. Phys. Mirabella 40 1637 2002 10.1002/polb.10228 Determination of the crystallinity of polyethylene/alpha-olefin copolymers by thermal analysis: relationship of the heat of fusion of 100% polyethylene crystal and the density 

  40. Macromol. React. Eng. Mueller 5 261 2011 10.1002/mren.201100011 Polymerization reactor modeling in industry 

  41. Prog. Polym. Sci. Muller 30 559 2005 10.1016/j.progpolymsci.2005.03.001 Thermal fractionation of polymers 

  42. J. Appl. Polym. Sci. Patel 60 749 1996 10.1002/(SICI)1097-4628(19960502)60:5<749::AID-APP14>3.0.CO;2-U Theoretical prediction of tie-chain concentration and its characterization using postyield response 

  43. AIChE J. Pontes 54 2346 2008 10.1002/aic.11566 Optimal operating policies for tailored linear polyethylene resins production 

  44. AIChE J. Pontes 57 2149 2011 10.1002/aic.12438 Optimal process operation for the production of linear polyethylene resins with tailored molecular weight distribution 

  45. AIChE J. Reginato 49 2642 2003 10.1002/aic.690491017 Modeling and simulation of propylene polymerization in nonideal loop reactors 

  46. Polymer Shan 43 7345 2002 10.1016/S0032-3861(02)00703-6 HDPE/LLDPE reactor blends with bimodal microstructures-Part 1: Mechanical properties 

  47. Polymer Shan 44 177 2003 10.1016/S0032-3861(02)00721-8 HDPE/LLDPE reactor blends with bimodal microstructures-Part II: Rheological properties 

  48. Comput. Chem. Eng. Shamiri 36 35 2012 10.1016/j.compchemeng.2011.07.015 Improved single phase modeling of propylene polymerization in a fluidized bed reactor 

  49. Soares 229 2012 Polyolefin Reaction Engineering 

  50. Macromol. React. Eng. Soares 8 235 2014 10.1002/mren.201300173 The use of instantaneous distributions in polymerization reaction engineering 

  51. J. Appl. Polym. Sci. Tian 125 2668 2012 10.1002/app.36473 Modeling and simulation of polypropylene particle size distribution in industrial horizontal stirred bed reactors 

  52. AIChE J. Tian 59 4468 2013 10.1002/aic.14248 An atmosphere-switching polymerization process: a novel strategy to advanced polyolefin materials 

  53. Chem. Eng. Sci. Tian 101 686 2013 10.1016/j.ces.2013.07.004 A model for the structures of impact polypropylene copolymers produced by an atmosphere-switching polymerization process 

  54. Chem. Eng. Sci. Touloupides 65 3208 2010 10.1016/j.ces.2010.02.014 Modeling and simulation of an industrial slurry-phase catalytic olefin polymerization reactor series 

  55. Macromol. React. Eng. Touloupidis 8 508 2014 10.1002/mren.201300188 Catalytic olefin polymerization process modeling: multi-scale approach and modeling guidelines for micro-scale/kinetic modeling 

  56. AIChE J. Weng 60 2498 2014 10.1002/aic.14445 A novel strategy for dynamic optimization of grade transition processes based on molecular weight distribution 

  57. Ind. Eng. Chem. Res. Xie 33 449 1994 10.1021/ie00027a001 Gas-phase ethylene polymerization-production processes, polymer properties, and reactor modeling 

  58. Chem. Eng. Sci. Zacca 48 3743 1993 10.1016/0009-2509(93)80218-F Modelling of the liquid phase polymerization of olefins in loop reactors 

  59. Chem. Eng. Sci. Zacca 52 1941 1997 10.1016/S0009-2509(97)00026-2 Reactor residence-time distribution effects on the multistage polymerization of olefins.2. Polymer properties: bimodal polypropylene and linear low-density polyethylene 

  60. Ind. Eng. Chem. Res. Zhang 52 7240 2013 10.1021/ie302488v Equation-oriented optimization on an industrial high-density polyethylene slurry process with target molecular weight distribution 

  61. Ind. Eng. Chem. Res. Zheng 50 322 2011 10.1021/ie101699b Steady-state and dynamic modeling of the basell multireactor olefin polymerization process 

  62. Macromol. Chem. Phys. Zhao 215 1434 2014 10.1002/macp.201400204 Novel SiO2-supported silyl-chromate(Cr)/imido-vanadium(V) bimetallic catalysts producing polyethylene and ethylene /1-hexene copolymers with bimodal molecular-weight distribution 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로