$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies 원문보기

Scientific data, v.2, 2015년, pp.150014 -   

Utturkar, Sagar M (Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37919, USA) ,  Klingeman, Dawn M (Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, USA) ,  Bruno-Barcena, José (Department of Plant and Microbial Biology, North Carolina State University , Raleigh, North Carolina 27695, USA) ,  M (Department of Biological and Agricultural Engineering, North Carolina State University , Raleigh, North Carolina 27695, USA) ,  Chinn, Mari S (Department of Plant and Microbial Biology, North Carolina State University , Raleigh, North Carolina 27695, USA) ,  Grunden, Amy M (LanzaTech , Skokie, Illinois 60077, USA) ,  Köpke, Michael (Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37919, USA) ,  Brown, Steven D

Abstract AI-Helper 아이콘AI-Helper

During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms ...

참고문헌 (47)

  1. NCBI Sequence Read Archive 2014 SRP030033 

  2. Dryad Utturkar S. M. 2015 http://dx.doi.org/10.5061/dryad.6fm1p 

  3. GenBank Brown S. D. 2014 NC_022592.1 

  4. GenBank Koepke M. 2010 NC_014328.1 

  5. Margulies M. et al. Genome sequencing in microfabricated high-density picolitre reactors . Nature 437 , 376 – 380 ( 2005 ). 16056220 

  6. van Dijk E. L. , Auger H. , Jaszczyszyn Y. & Thermes C. Ten years of next-generation sequencing technology . Trends Genet. 30 , 418 – 426 ( 2014 ). 25108476 

  7. Liu L. et al. Comparison of next-generation sequencing systems . J. Biomed. Biotechnol. 2012 , 251364 ( 2012 ). 22829749 

  8. Brown S. et al. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia . Biotechnol. Biofuels 7 , 40 ( 2014 ). 24655715 

  9. Quail M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers . BMC Genomics 13 , 341 ( 2012 ). 22827831 

  10. Koren S. et al. Reducing assembly complexity of microbial genomes with single-molecule sequencing . Genome Biol. 14 , R101 ( 2013 ). 24034426 

  11. Roberts R. J. , Carneiro M. O. & Schatz M. C. The advantages of SMRT sequencing . Genome Biol. 14 , 405 ( 2013 ). 23822731 

  12. Kim K. E. et al. Long-read, whole-genome shotgun sequence data for five model organisms . Sci. Data 1 , 140045 ( 2014 ). 25977796 

  13. Koren S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads . Nat. Biotechnol. 30 , 693 – 700 ( 2012 ). 22750884 

  14. Chin C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data . Nat. Methods 10 , 563 – 569 ( 2013 ). 23644548 

  15. Utturkar S. M. et al. Evaluation and validation of de novo and hybrid assembly techniques to derive high quality genome sequences . Bioinformatics 30 , 2709 – 2716 ( 2014 ). 24930142 

  16. Walker B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement . PLoS ONE 9 , e112963 ( 2014 ). 25409509 

  17. Salmela L. & Rivals E. LoRDEC: accurate and efficient long read error correction . Bioinformatics 30 , 3506 – 3514 ( 2014 ). 25165095 

  18. Lee H. et al. Error correction and assembly complexity of single molecule sequencing reads . Preprint at BioRxiv http://dx.doi.org/10.1101/006395 ( 2014 ). 

  19. Hackl T. , Hedrich R. , Schultz J. & Forster F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus . Bioinformatics 30 , 3004 – 3011 ( 2014 ). 25015988 

  20. Ye C. , Hill C. , Koren S. , Ruan J. , Zhanshan M. , Yorke J. A. & Zimin A. DBG2OLC: Efficient assembly of large genomes using the compressed overlap graph . Preprint at arXiv http://arxiv.org/abs/1410.2801 ( 2014 ). 

  21. Prjibelski A. D. et al. ExSPAnder: a universal repeat resolver for DNA fragment assembly . Bioinformatics 30 , i293 – i301 ( 2014 ). 24931996 

  22. English A. C. , Salerno W. J. & Reid J. G. PBHoney: identifying genomic variants via long-read discordance and interrupted mapping . BMC Bioinformatics 15 , 180 ( 2014 ). 24915764 

  23. Satou K. et al. Complete genome sequences of eight Helicobacter pylori strains with different virulence factor genotypes and methylation profiles, isolated from patients with diverse gastrointestinal diseases on Okinawa Island, Japan, determined using PacBio Single-Molecule Real-Time Technology . Genome Announc. 2 , 2 e00286 – 14 ( 2014 ). 24744331 

  24. Mehnaz S. , Bauer J. S. & Gross H. Complete genome sequence of the sugar cane endophyte Pseudomonas aurantiaca PB-St2, a disease-suppressive bacterium with antifungal activity toward the plant pathogen Colletotrichum falcatum . Genome Announc. 2 , 1 e01108 – e01113 ( 2014 ). 24459254 

  25. Harhay G. P. et al. Complete closed genome sequences of three Bibersteinia trehalosi nasopharyngeal isolates from cattle with shipping fever . Genome Announc. 2 , 1 e00084 – 14 ( 2014 ). 24526647 

  26. Eckweiler D. , Bunk B. , Sproer C. , Overmann J. & Haussler S. Complete genome sequence of highly adherent Pseudomonas aeruginosa small-colony variant SCV20265 . Genome Announc. 2 , 1 e01232 – 13 ( 2014 ). 24459283 

  27. Brown S. D. et al. Complete genome sequence of Pelosinus sp. strain UFO1 assembled using Single-Molecule Real-Time DNA sequencing technology . Genome Announc. 2 , 5 e00881 – 14 ( 2014 ). 25189589 

  28. Koren S. & Phillippy A. M. ONE chromosome, one contig: complete microbial genomes from long-read sequencing and assembly . Curr. Opin. Microbiol. 23C , 110 – 120 ( 2014 ). 25461581 

  29. Davis B. M. , Chao M. C. & Waldor M. K. Entering the era of bacterial epigenomics with single molecule real time DNA sequencing . Curr. Opin. Microbiol. 16 , 192 – 198 ( 2013 ). 23434113 

  30. Lesiak J. M. , Liebl W. & Ehrenreich A. Development of an in vivo methylation system for the solventogen Clostridium saccharobutylicum NCP 262 and analysis of two endonuclease mutants . J. Biotechnol. 188C , 97 – 99 ( 2014 ). 25087740 

  31. Mermelstein L. D. & Papoutsakis E. T. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824 . Appl. Environ. Microbiol. 59 , 1077 – 1081 ( 1993 ). 8386500 

  32. Pyne M. E. , Moo-Young M. , Chung D. A. & Chou C. P. Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum . Biotechnol. Biofuels 6 , 50 ( 2013 ). 23570573 

  33. Pushkarev D. , Neff N. F. & Quake S. R. Single-molecule sequencing of an individual human genome . Nat. Biotechnol. 27 , 847 – 850 ( 2009 ). 19668243 

  34. Ju J. et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators . Proc. Natl Acad. Sci. USA 103 , 19635 – 19640 ( 2006 ). 17170132 

  35. Clarke J. et al. Continuous base identification for single-molecule nanopore DNA sequencing . Nat. Nanotechnol. 4 , 265 – 270 ( 2009 ). 19350039 

  36. BusinessWire. Quantum Biosystems Demonstrates First Reads Using Quantum Single Molecule Sequencing. http://www.businesswire.com/news/home/20140127005012/en/Quantum-Biosystems-Demonstrates-Reads-Quantum-Single-Molecule#.VIH5dDHF8fU ( 2014 ). 

  37. Quick J. , Quinlan A. R. & Loman N. J. A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer . Gigascience 3 , 22 ( 2014 ). 25386338 

  38. Bruno-Barcena J. M. , Chinn M. S. & Grunden A. M. Genome sequence of the autotrophic acetogen Clostridium autoethanogenum JA1-1 strain DSM 10061, a producer of ethanol from carbon monoxide . Genome Announc. 1 , 4 e00628 – 13 ( 2013 ). 23950130 

  39. Kopke M. et al. Clostridium ljungdahlii represents a microbial production platform based on syngas . Proc. Natl Acad. Sci. USA 107 , 13087 – 13092 ( 2010 ). 20616070 

  40. Yang S. , Klingeman D. M. & Brown S. D . Microbial Metabolic Engineering: Methods and Protocols Vol. 834 , 111 – 136 (Springer, 2012 ). 

  41. Pacific-BioSciences. Detecting DNA Base Modifications . http://www.pacb.com/pdf/TN_Detecting_DNA_Base_Modifications.pdf ( 2012 ). 

  42. Illumina-Inc. CASAVA v1.8.2 User Guide http://support.illumina.com/content/dam/illumina-support/documents/myillumina/a557afc4-bf0e-4dad-9e59-9c740dd1e751/casava_userguide_15011196d.pdf ( 2011 ). 

  43. Salzberg S. L. et al. GAGE: A critical evaluation of genome assemblies and assembly algorithms . Genome Res. 22 , 557 – 567 ( 2012 ). 22147368 

  44. CLC, CLC Genomics Workbenach Manual—Trimming using the Trim tool. http://www.clcsupport.com/clcgenomicsworkbench/800/index.php?manual=Trimming_using_Trim_tool.html ( 2015 ). 

  45. Pacific-Biosciences, Statistics Output Guide. http://files.pacb.com/software/instrument/1.3.1/Statistics%20Output%20Guide.pdf ( 2014 ). 

  46. Langmead B. & Salzberg S. L. Fast gapped-read alignment with Bowtie 2 . Nat. Methods 9 , 357 – 359 ( 2012 ). 22388286 

  47. Chaisson M. J. & Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory . BMC Bioinformatics 13 , 238 ( 2012 ). 22988817 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로