$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Endosymbiotic theories for eukaryote origin 원문보기

Philosophical transactions. Biological sciences, v.370 no.1678, 2015년, pp.20140330 -   

Martin, William F. ,  Garg, Sriram ,  Zimorski, Verena

Abstract AI-Helper 아이콘AI-Helper

For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of th...

주제어

참고문헌 (181)

  1. 1 Knoll AH 2014 Paleobiological perspectives on early eukaryotic evolution . Cold Spring Harb. Perspect. Biol . 6 , a016121 ( 10.1101/cshperspect.a016121 ) 24384569 

  2. 2 Lane N 2014 Bioenergetic constraints on the evolution of complex life . Cold Spring Harb. Perspect. Biol . 6 , a015982 ( 10.1101/cshperspect.a015982 ) 24789818 

  3. 3 Wideman JG , Leung KF , Field MC , Dacks JB 2014 The cell biology of the endocytic system from an evolutionary perspective . Cold Spring Harb. Perspect. Biol . 6 , a016998. ( 10.1101/cshperspect.a016998 ) 

  4. 4 Koonin EV 2012 The logic of chance: the nature and origin of biological evolution . Upper Saddle River, NJ : FT Press . 

  5. 5 Adl SM et al. 2005 The new higher level classification of eukaryotes with emphasis on the taxonomy of protists . J. Eukaryot. Microbiol . 52 , 399 – 451 . ( 10.1111/j.1550-7408.2005.00053.x ) 16248873 

  6. 6 Archibald JM 2014 One plus one equals one: symbiosis and the evolution of complex life . Oxford, UK : Oxford University Press . 

  7. 7 Altmann R 1890 Die Elementarorganismen und ihre Beziehungen zu den Zellen . Leipzig, Germany : Verlag von Veit & Comp . 

  8. 8 Höxtermann E , Mollenhauer D 2007 Symbiose und Symbiogenese—Entdeckung und Entwicklung eines biologischen Problems . In Evolution durch Kooperation und Integration (eds Geus A , Höxtermann E ), p. 258 Marburg an der Lahn : Basilisken-Presse . 

  9. 9 Schwendener S 1867 Über die wahre Natur der Flechten . Verhandlungen der Schweizerischen Naturforschenden Gesellschaft in Rheinfelden 51 , 88 – 90 . 

  10. 10 De Bary A 1878 Über Symbiose . Tageblatt der 51. Versammlung deutscher Naturforscher und Aerzte in Cassel , pp. 121 – 126 . 

  11. 11 Schimper AFW 1883 Über die Entwickelung der Chlorophyllkörner und Farbkörper . Bot . Z 41 , 105 – 120 , 121–136, 137–152, 153–162 . 

  12. 12 Schimper AFW 1885 Untersuchungen über die Chlorophyllkörner und die ihnen homologen Gebilde . Jahrb. wiss. Bot . 16 , 1 – 247 . 

  13. 13 Mereschkowsky C 1905 Über Natur und Ursprung der Chromatophoren im Pflanzenreiche . Biol. Centralbl . 25 , 593 – 604 . 

  14. 14 Martin W , Kowallik K 1999 Annotated English translation of Meresch­kowsky's 1905 paper ‘Über Natur und Ursprung der Chromatophoren im Pflanzenreiche’ . Eur. J. Phycol. 34 , 287 – 295 . ( 10.1080/09670269910001736342 ) 

  15. 15 Mereschkowsky C 1910 Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis , einer neuen Lehre von der Entstehung der Organismen . Biol. Centralbl . 30 , 353 – 442 . 

  16. 16 Geus A , Höxtermann E 2007 Evolution durch Kooperation und Integration . Marburg an der Lahn : Basilisken-Presse . 

  17. 17 Schlacht A , Herman EK , Klute MJ , Field MC , Dacks JB 2014 Missing pieces of an ancient puzzle: Evolution of the eukaryotic membrane-trafficking system . Cold Spring Harb. Perspect. Biol . 6 , a016048 ( 10.1101/cshperspect.a016048 ) 25274701 

  18. 18 De Duve C 2007 The origin of eukaryotes: a reappraisal . Nat. Rev. Genet . 8 , 395 – 403 . ( 10.1038/nrg2071 ) 17429433 

  19. 19 Margulis L , Chapman M , Guerrero R , Hall J 2006 The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon . Proc. Natl Acad. Sci . USA 103 , 13 080 – 13 085 . ( 10.1073/pnas.0604985103 ) 

  20. 20 Lindmark DG , Müller M 1973 Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus , and its role in pyruvate metabolism . J. Biol. Chem . 248 , 7724 – 7728 . 4750424 

  21. 21 Müller M et al. 2012 Biochemistry and evolution of anaerobic energy metabolism in eukaryotes . Microbiol. Mol. Biol. Rev . 76 , 444 – 495 . ( 10.1128/MMBR.05024-11 ) 22688819 

  22. 22 Martin W , Hoffmeister M , Rotte C , Henze K 2001 An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes) and their heterotrophic lifestyle . Biol. Chem . 382 , 1521 – 1539 . ( 10.1515/BC.2001.187 ) 11767942 

  23. 23 Martin W , Rotte C , Hoffmeister M , Theissen U , Gelius-Dietrich G , Ahr S , Henze K 2003 Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited . IUBMB Life 55 , 193 – 204 . ( 10.1080/1521654031000141231 ) 12880199 

  24. 24 Martin W 2007 Eukaryote and mitochondrial origins: Two sides of the same coin and too much ado about oxygen . In Primary producers of the sea (eds Falkowski P , Knoll AH ), pp. 53 – 73 . New York, NY : Academic Press . 

  25. 25 Martin W , Müller M 1998 The hydrogen hypothesis for the first eukaryote . Nature 392 , 37 – 41 . ( 10.1038/32096 ) 9510246 

  26. 26 Tovar J , Fischer A , Clark CG 1999 The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica . Mol. Microbiol . 32 , 1013 – 1021 . ( 10.1046/j.1365-2958.1999.01414.x ) 10361303 

  27. 27 Tovar J , León-Avila G , Sánchez LB , Sutak R , Tachezy J , van der Giezen M , Hernández M , Müller M , Lucocq JM 2003 Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation . Nature 426 , 172 – 176 . ( 10.1038/nature01945 ) 14614504 

  28. 28 van der Giezen M 2009 Hydrogenosomes and mitosomes: conservation and evolution of functions . J. Eukaryot. Microbiol . 56 , 221 – 231 . ( 10.1111/j.1550-7408.2009.00407.x ) 19527349 

  29. 29 Embley TM , van der Giezen M , Horner DS , Dyal PL , Foster P 2003 Mitochondria and hydrogenosomes are two forms of the same fundamental organelle . Phil. Trans. R. Soc. Lond. B 358 , 191 – 202 . ( 10.1098/rstb.2002.1190 ) 12594927 

  30. 30 Williams TA , Foster PG , Cox CJ , Embley TM 2013 An archaeal origin of eukaryotes supports only two primary domains of life . Nature 504 , 231 – 236 . ( 10.1038/nature12779 ) 24336283 

  31. 31 Guy L , Saw JH , Ettema TJG 2014 The archaeal legacy of eukaryotes: a phylogenomic perspective . Cold Spring Harb. Perspect. Biol . 6 , a016022 ( 10.1101/cshperspect.a016022 ) 24993577 

  32. 32 McInerney JO , O'Connell M , Pisani D 2014 The hybrid nature of the Eukaryota and a consilient view of life on Earth . Nat. Rev. Microbiol . 12 , 449 – 455 . ( 10.1038/nrmicro3271 ) 24814066 

  33. 33 Simpson AGB , Roger AJ 2004 The real ‘kingdoms’ of eukaryotes . Curr. Biol . 14 , R693 – R696 . ( 10.1016/j.cub.2004.08.038 ) 15341755 

  34. 34 Lane N , Martin W 2010 The energetics of genome complexity . Nature 467 , 929 – 934 . ( 10.1038/nature09486 ) 20962839 

  35. 35 Martin W , Koonin EV 2006 Introns and the origin of nucleus–cytosol compartmentalization . Nature 440 , 41 – 45 . ( 10.1038/nature04531 ) 16511485 

  36. 36 Thiergart T , Landan G , Schenk M , Dagan T , Martin WF 2012 An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin . Genome Biol. Evol. 4 , 466 – 485 . ( 10.1093/gbe/evs018 ) 22355196 

  37. 37 Rivera MC , Jain R , Moore JE , Lake JA 1998 Genomic evidence for two functionally distinct gene classes . Proc. Natl Acad. Sci . USA 95 , 6239 – 6244 . ( 10.1073/pnas.95.11.6239 ) 9600949 

  38. 38 Maier U-G , Zauner S , Woehle C , Bolte K , Hempel F , Allen JF , Martin WF 2013 Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes . Genome Biol. Evol . 5 , 2318 – 2329 . ( 10.1093/gbe/evt181 ) 24259312 

  39. 39 Gilson PR , Maier UG , McFadden GI 1997 Size isn't everything: Lessons in genetic miniaturisation from nucleomorphs . Curr. Opin. Genet. Dev . 7 , 800 – 806 . ( 10.1016/S0959-437X(97)80043-3 ) 9468790 

  40. 40 Martin W 1999 A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not . Proc. R. Soc. Lond. B 266 , 1387 – 1395 . ( 10.1098/rspb.1999.0792 ) 

  41. 41 Ku C , Nelson-Sathi S , Roettger M , Garg S , Hazkani-Covo E , Martin WF In press. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimaerism in eukaryotes . Proc. Natl Acad. Sci. USA. ( 10.1073/pnas.1421385112 ) 

  42. 42 Hansmann S , Martin W 2000 Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis . Int. J. Syst. Evol. Microbiol . 50 , 1655 – 1663 . ( 10.1099/00207713-50-4-1655 ) 10939673 

  43. 43 Charlebois RL , Doolittle WF 2004 Computing prokaryotic gene ubiquity: rescuing the core from extinction . Genome Res . 14 , 2469 – 2477 . ( 10.1101/gr.3024704 ) 15574825 

  44. 44 Cicarelli FD , Doerks T , von Mering C , Creevey CJ , Snel B , Bork P 2006 Toward automatic reconstruction of a highly resolved tree of life . Science 311 , 1283 – 1287 . ( 10.1126/science.1123061 ) 16513982 

  45. 45 Esser C et al. 2004 A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes . Mol. Biol. Evol . 21 , 1643 – 1660 . ( 10.1093/molbev/msh160 ) 15155797 

  46. 46 Pisani D , Cotton JA , McInerney JO 2007 Supertrees disentangle the chime­rical origin of eukaryotic genomes . Mol. Biol. Evol . 24 , 1752 – 1760 . ( 10.1093/molbev/msm095 ) 17504772 

  47. 47 Cotton JA , McInerney JO 2010 Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function . Proc. Natl Acad. Sci. USA 107 , 17 252 – 17 255 . ( 10.1073/pnas.1000265107 ) 

  48. 48 Lane CE , Archibald JM 2008 The eukaryotic tree of life: endosymbiosis takes its TOL . Trends Ecol. Evol . 23 , 268 – 275 . ( 10.1016/j.tree.2008.02.004 ) 18378040 

  49. 49 Embley TM , Hirt RP 1998 Early branching eukaryotes? Curr. Opin. Genet. Dev . 8 , 624 – 629 . ( 10.1016/S0959-437X(98)80029-4 ) 9914207 

  50. 50 Cox CJ , Foster PG , Hirt RP , Harris SR , Embley TM 2008 The archaebacterial origin of eukaryotes . Proc. Natl Acad. Sci. USA 105 , 20 356 – 20 361 . ( 10.1073/pnas.0810647105 ) 18162539 

  51. 51 Williams TA , Embley M 2014 Archaeal ‘dark matter’ and the origin of eukaryotes . Genome Biol. Evol . 6 , 474 – 481 . ( 10.1093/gbe/evu031 ) 24532674 

  52. 52 Kelly S , Wickstead B , Gull K 2011 Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes . Proc. R. Soc. B 278 , 1009 – 1018 . ( 10.1098/rspb.2010.1427 ) 

  53. 53 Martin W 2005 Archaebacteria (Archaea) and the origin of the eukaryotic nucleus . Curr. Opin. Microbiol . 8 , 630 – 637 . ( 10.1016/j.mib.2005.10.004 ) 16242992 

  54. 54 Pederson T 2011 The nucleus introduced . Cold Spring Harb. Perspect. Biol . 5 , a000521 ( 10.1101/cshperspect.a000521 ) 

  55. 55 Cavalier-Smith T 1987 The origin of eukaryote and archaebacterial cells . Ann. NY Acad. Sci . 503 , 17 – 54 . ( 10.1111/j.1749-6632.1987.tb40596.x ) 3113314 

  56. 56 Cavalier-Smith T 1988 Origin of the cell-nucleus . Bioessays 9 , 72 – 78 . ( 10.1002/bies.950090209 ) 3066361 

  57. 57 Cavalier-Smith T 2002 The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa . Int. J. Syst. Evol. Microbiol . 52 , 297 – 354 . ( 10.1099/ijs.0.02058-0 ) 11931142 

  58. 58 Cavalier-Smith T 2004 Only six kingdoms of life . Proc. R. Soc. B 271 , 1251 – 1262 . ( 10.1098/rspb.2004.2705 ) 

  59. 59 Gould GW , Dring GJ 1979 Possible relationship between bacterial endospore formation and the origin of eukaryotic cells . J. Theor. Biol . 81 , 47 – 53 . ( 10.1016/0022-5193(79)90079-1 ) 529818 

  60. 60 Zillig W , Klenk H-P , Palm P , Leffers H , Pühler G , Gropp F , Garrett RA 1989 Did eukaryotes originate by a fusion event? Endocyt. Cell Res . 6 , 1 – 25 . 

  61. 61 Gupta RS , Golding GB 1996 The origin of the eukaryotic cell . Trends Biochem. Sci . 21 , 166 – 171 . ( 10.1016/S0968-0004(96)20013-1 ) 8871398 

  62. 62 Fuerst JA , Webb RI 1991 Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus . Proc. Natl Acad. Sci. USA 88 , 8184 – 8188 . ( 10.1073/pnas.88.18.8184 ) 11607213 

  63. 63 Santarella-Mellwig R , Pruggnaller S , Roos N , Mattaj IW , Devos DP 2013 Three-dimensional reconstruction of bacteria with a complex endomembrane system . PLoS Biol . 11 , e1001565 ( 10.1371/journal.pbio.1001565 ) 23700385 

  64. 64 Devos DP 2013 PVC bacteria: Variation of, but not exception to, the Gram-negative cell plan . Trends Microbiol. 22 , 14 – 20 . ( 10.1016/j.tim.2013.10.008 ) 24286661 

  65. 65 Searcy DG , Hixon WG 1991 Cytoskeletal origins in sulfur-metabolizing archaebacteria . Biosystems 25 , 1 – 11 . ( 10.1016/0303-2647(91)90008-9 ) 

  66. 66 Lake JA , Rivera MC 1994 Was the nucleus the first endosymbiont? Proc. Natl Acad. Sci. USA 91 , 2880 – 2881 . ( 10.1073/pnas.91.8.2880 ) 8159671 

  67. 67 Moreira D , López-García P 1998 Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis . J. Mol. Evol . 47 , 517 – 530 . ( 10.1007/PL00006408 ) 9797402 

  68. 68 López-García P , Moreira D 2006 Selective forces for the origin of the eukaryotic nucleus . Bioessays 28 , 525 – 533 . ( 10.1002/bies.20413 ) 16615090 

  69. 69 Kuwabara T , Minaba M , Ogi N , Kamekura M 2007 Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent . Int. J. Syst. Evol. Microbiol . 57 , 437 – 443 . ( 10.1099/ijs.0.64597-0 ) 17329765 

  70. 70 Margulis L , Dolan MF , Guerro R 2000 The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists . Proc. Natl Acad. Sci. USA 97 , 6954 – 6959 . ( 10.1073/pnas.97.13.6954 ) 10860956 

  71. 71 Bell PJL 2001 Viral eukaryogenesis: Was the ancestor of the nucleus a complex DNA virus? J. Mol. Evol . 53 , 251 – 256 . ( 10.1111/j.1749-6632.2009.04994.x ) 11523012 

  72. 72 Horiike T , Hamada K , Miyata D , Shinozawa T 2004 The origin of eukaryotes is suggested as the symbiosis of Pyrococcus into γ-proteobacteria by phylogenetic tree based on gene content . J. Mol. Evol . 59 , 606 – 619 . ( 10.1007/s00239-004-2652-5 ) 15693617 

  73. 73 Forterre P , Gribaldo S 2010 Bacteria with a eukaryotic touch: a glimpse of ancient evolution? Proc. Natl Acad. Sci. USA 107 , 12 739 – 12 740 . ( 10.1073/pnas.1007720107 ) 

  74. 74 Kurland CG , Collins LJ , Penny D 2006 Genomics and the irreducible nature of eukaryote cells . Science 312 , 1011 – 1014 . ( 10.1126/science.1121674 ) 16709776 

  75. 75 Penny D , Collins LJ , Daly TK , Cox SJ 2014 The relative ages of eukaryotes and akaryotes . J. Mol. Evol . 79 , 228 – 239 . ( 10.1007/s00239-014-9643-y ) 25179144 

  76. 76 Field MC , Sali A , Rout MP 2011 On a bender—BARs, ECRTs, COPs, and finally getting your coat . J. Cell Biol . 193 , 963 – 972 . ( 10.1083/jcb.201102042 ) 21670211 

  77. 77 Forterre P 2011 A new fusion hypothesis for the origin of Eukaryota: better than previous ones, but probably also wrong . Res. Microbiol . 162 , 77 – 91 . ( 10.1016/j.resmic.2010.10.005 ) 21034817 

  78. 78 McInerney JO , Martin WF , Koonin EV , Allen JF , Galperin MY , Lane N , Archibald JM , Embley TM 2011 Planctomycetes and eukaryotes: a case of analogy not homology . Bioessays 33 , 810 – 817 . ( 10.1002/bies.201100045 ) 21858844 

  79. 79 Embley TM , Martin W 2006 Eukaryotic evolution, changes and challenges . Nature 440 , 623 – 630 . ( 10.1038/nature04546 ) 16572163 

  80. 80 McFadden GI , van Dooren GG 2004 Evolution: red algal genome affirms a common origin of all plastids . Curr. Biol . 14 , R514 – R516 . ( 10.1016/j.cub.2004.06.041 ) 15242632 

  81. 81 Keeling PJ 2013 The number, speed, and impact of plastid endosymbiosis in eukaryotic evolution . Annu. Rev. Plant. Biol . 64 , 583 – 607 . ( 10.1146/annurev-arplant-050312-120144 ) 23451781 

  82. 82 Zimorski V , Ku C , Martin WF , Gould SB 2014 Endosymbiotic theory for organelle origins . Curr. Opin. Microbiol. 22 , 38 – 48 . ( 10.1016/j.mib.2014.09.008 ) 25306530 

  83. 83 Wallin IE 1927 Symbionticism and the origin of species , 171 London, UK : Bailliere, Tindall and Cox . 

  84. 84 Wallin IE 1925 On the nature of mitochondria. IX. Demonstration of the bacterial nature of mitochondria . Am. J. Anat . 36 , 131 – 139 . ( 10.1002/aja.1000360106 ) 

  85. 85 Wilson EB 1928 The cell in development and heredity , 3rd revised edtion New York, NY : Macmillan ( Reprinted 1987 by Garland Publishing, New York.) 

  86. 86 Buchner P 1953 Endosymbiose der Tiere mit pflanzlichen Mikroorganismen . Basel, Switzerland : Birkhäuser, Basel . 

  87. 87 Lederberg J 1952 Cell genetics and hereditary symbiosis . Physiol. Rev . 32 , 403 – 430 . 13003535 

  88. 88 Sagan L 1967 On the origin of mitosing cells . J. Theoret. Biol . 14 , 225 – 274 . ( 10.1016/0022-5193(67)90079-3 ) 

  89. 89 Goksøyr J 1967 Evolution of eucaryotic cells . Nature 214 , 1161 ( 10.1038/2141161a0 ) 

  90. 90 Knoll AH 2012 Lynn Margulis, 1938–2011 . Proc. Natl Acad. Sci. USA 109 , 1022 ( 10.1073/pnas.1120472109 ) 22308528 

  91. 91 Margulis L 1970 Origin of eukaryotic cells . New Haven, CT : Yale University Press . 

  92. 92 de Duve C 1969 Evolution of the peroxisome . Ann. NY Acad. Sci . 168 , 369 – 381 . ( 10.1111/j.1749-6632.1969.tb43124.x ) 5270945 

  93. 93 Stanier Y 1970 Some aspects of the biology of cells and their possible evolutionary significance . Symp. Soc. Gen. Microbiol . 20 , 1 – 38 . 

  94. 94 Raff RA , Mahler HR 1972 The non symbiotic origin of mitochondria . Science 177 , 575 – 582 . ( 10.1126/science.177.4049.575 ) 4340327 

  95. 95 Bogorad L 1975 Evolution of organelles and eukaryotic genomes . Science 188 , 891 – 898 . ( 10.1126/science.1138359 ) 1138359 

  96. 96 Cavalier-Smith T 1975 The origin of nuclei and of eukaryotic cells . Nature 256 , 463 – 468 . ( 10.1038/256463a0 ) 808732 

  97. 97 Bonen L , Doolittle WF 1975 On the prokaryotic nature of red algal chloroplasts . Proc. Natl Acad. Sci. USA 72 , 2310 – 2314 . ( 10.1073/pnas.72.6.2310 ) 1056032 

  98. 98 Anderson S et al. 1981 Sequence and organization of the human mitochondrial genome . Nature 290 , 457 – 465 . ( 10.1038/290457a0 ) 7219534 

  99. 99 John P , Whatley FR 1975 Paracoccus denitrificans and the evolutionary origin of the mitochondrion . Nature 254 , 495 – 498 . ( 10.1038/254495a0 ) 235742 

  100. 100 Woese CR 1977 Endosymbionts and mitochondrial origins . J. Mol. Evol . 10 , 93 – 96 . ( 10.1007/BF01751802 ) 592424 

  101. 101 Van Valen LM , Maiorana VC 1980 The Archaebacteria and eukaryotic origins . Nature 287 , 248 – 250 . ( 10.1038/287248a0 ) 6159535 

  102. 102 Doolittle WF 1980 Revolutionary concepts in evolutionary biology . Trends Biochem. Sci . 5 , 146 – 149 . ( 10.1016/0968-0004(80)90010-9 ) 

  103. 103 Margulis L 1981 Symbiosis in cell evolution . San Francisco, CA : Freeman . 

  104. 104 Vellai T , Vida G 1998 The origin of the eukaryotes: the difference between prokaryotic and eukaryotic cells . Proc. R. Soc. Lond. B 266 , 1571 – 1577 . ( 10.1098/rspb.1999.0817 ) 

  105. 105 Searcy DG 1992 Origins of mitochondria and chloroplasts from sulphurbased symbioses . In The origin and evolution of the cell (eds Hartman H , Matsuno K ), pp. 47 – 78 . Singapore : World Scientific . 

  106. 106 Martijn J , Ettema TJG 2013 From archaeon to eukaryote: The evolutionary dark ages of the eukaryotic cell . Biochem. Soc. Trans . 41 , 451 – 457 . ( 10.1042/BST20120292 ) 23356327 

  107. 107 Gray MW 2014 The pre-endosymbiont hypothesis: a new perspective on the origin and evolution of mitochondria . Cold Spring Harb. Perspect. Biol . 6 , a016097 ( 10.1101/cshperspect.a016097 ) 24591518 

  108. 108 Baum DA , Baum B 2014 An inside-out origin for the eukaryotic cell . BMC Biol . 12 , 76 ( 10.1186/s12915-014-0076-2 ) 25350791 

  109. 109 Davidov Y , Jurkevitch E 2009 Predation between prokaryotes and the origin of eukaryotes . Bioessays 31 , 748 – 757 . ( 10.1002/bies.200900018 ) 19492355 

  110. 110 Davidov Y , Huchon D , Koval SF , Jurkevitch E 2006 A new alpha-proteobacterial clade of Bdellovibrio -like predators: implications for the mitochondrial endosymbiotic theory . Environ. Microbiol . 8 , 2179 – 2188 . ( 10.1111/j.1462-2920.2006.01101.x ) 17107559 

  111. 111 Pasternak Z et al. 2014 In and out: An analysis of epibiotic vs periplasmic bacterial predators . ISME J . 8 , 625 – 635 . ( 10.1038/ismej.2013.164 ) 24088628 

  112. 112 Goldberg AV et al. 2008 Localization and functionality of microsporidian iron-sulphur cluster assembly proteins . Nature 452 , 624 – 628 . ( 10.1038/nature06606 ) 18311129 

  113. 113 Tsaousis AD , Kunji ERS , Goldberg AV , Lucocq JM , Hirt RP , Embley TM 2008 A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi . Nature 453 , 553 – 556 . ( 10.1038/nature06903 ) 18449191 

  114. 114 Williams BAP , Hirt RP , Lucocq JM , Embley TM 2002 A mitochondrial remnant in the microsporidian Trachipleistophora hominis . Nature 418 , 865 – 869 . ( 10.1038/nature00949 ) 12192407 

  115. 115 Brown JR , Doolittle WF 1997 Archaea and the prokaryote-to-eukaryote transition . Microbiol. Mol. Biol. Rev . 61 , 456 – 502 . 9409149 

  116. 116 Martin W , Brinkmann H , Savona C , Cerff R 1993 Evidence for a chimeric nature of nuclear genomes: Eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes . Proc. Natl Acad. Sci. USA 90 , 8692 – 8696 . ( 10.1073/pnas.90.18.8692 ) 8378350 

  117. 117 Timmis JN , Ayliffe MA , Huang CY , Martin W 2004 Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes . Nat. Rev. Genet . 5 , 123 – 135 . ( 10.1038/nrg1271 ) 14735123 

  118. 118 López-García P , Moreira D 1999 Metabolic symbiosis at the origin of eukaryotes . Trends Biochem. Sci . 24 , 88 – 93 . ( 10.1016/S0968-0004(98)01342-5 ) 10203753 

  119. 119 Finlay BJ , Embley TM , Fenchel T 1993 A new polymorphic methanogen, closely related to Methanocorpusculum parvum , living in stable symbiosis within the anaerobic ciliate Trimyema sp . J. Gen. Microbiol . 139 , 371 – 378 . ( 10.1099/00221287-139-2-371 ) 7679721 

  120. 120 von Dohlen CD , Kohler S , Alsop ST , McManus WR 2001 Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts . Nature 412 , 433 – 436 . ( 10.1038/35086563 ) 11473316 

  121. 121 Husnik F et al. 2013 Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis . Cell 153 , 1567 – 1578 . ( 10.1016/j.cell.2013.05.040 ) 23791183 

  122. 122 Yutin N , Wolf MY , Wolf YI , Koonin EV 2009 The origins of phagocytosis and eukaryogenesis . Biol. Direct 4 , 9 ( 10.1186/1745-6150-4-9 ) 19245710 

  123. 123 Nelson-Sathi S , Dagan T , Landan G , Janssen A , Steel M , McInerney JO , Deppenmeier U , Martin WF 2012 Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea . Proc. Natl Acad. Sci. USA 109 , 20 537 – 20 542 . ( 10.1073/pnas.1209119109 ) 

  124. 124 Nelson-Sathi S et al. 2015 Origins of major archaeal clades correspond to gene acquisitions from bacteria . Nature 517 , 77 – 80 . ( 10.1038/nature13805 ) 25317564 

  125. 125 Say RF , Fuchs G 2010 Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme . Nature 464 , 1077 – 1081 . ( 10.1038/nature08884 ) 20348906 

  126. 126 Reher M , Fuhrer T , Bott M , Schönheit P 2010 The nonphosphorylative Entner-Doudoroff pathway in the thermoacidophilic euryarchaeon Picrophilus torridus involves a novel 2-keto-3-deoxygluconate-specific aldolase . J. Bacteriol . 192 , 964 – 974 . ( 10.1128/JB.01281-09 ) 20023024 

  127. 127 Bräsen C , Esser D , Rauch B , Siebers B 2014 Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation . Microbiol. Mol. Biol. Rev . 78 , 89 – 175 . ( 10.1128/MMBR.00041-13 ) 24600042 

  128. 128 Hannaert V 2000 Enolase from Trypanosoma brucei , from the amitochondriate protist Mastigamoeba balamuthi , and from the chloroplast and cytosol of Euglena gracilis : pieces in the evolutionary puzzle of the eukaryotic glycolytic pathway . Mol. Biol. Evol . 17 , 989 – 1000 . ( 10.1093/oxfordjournals.molbev.a026395 ) 10889212 

  129. 129 Lange BM , Rujan T , Martin W , Croteau R 2000 Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes . Proc. Natl Acad. Sci. USA 97 , 13 172 – 13 177 . ( 10.1073/pnas.240454797 ) 

  130. 130 Waldbauer JR , Newman DK , Summons RE 2011 Microaerobic steroid biosynthesis and the molecular fossil record of Archean life . Proc. Natl Acad. Sci. USA 108 , 13 409 – 13 414 . ( 10.1073/pnas.1104160108 ) 

  131. 131 Poole A , Jeffares D , Penny D 1999 Early evolution: prokaryotes, the new kids on the block . Bioessays 21 , 880 – 889 . ( 10.1002/(SICI)1521-1878(199910)21:10 3.0.CO;2-P ) 10497339 

  132. 132 Lambowitz AM , Zimmerly S 2011 Group II introns: Mobile ribozymes that invade DNA . Cold Spring Harb. Perspect. Biol . 3 , a003616 ( 10.1101/cshperspect.a003616 ) 20463000 

  133. 133 Lambowitz AM , Zimmerly S 2004 Mobile group II introns . Annu. Rev. Genet . 38 , 1 – 35 . ( 10.1146/annurev.genet.38.072902.091600 ) 15568970 

  134. 134 Matsuura M et al. 1997 A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron . Genes Dev . 11 , 2910 – 2924 . ( 10.1101/gad.11.21.2910 ) 9353259 

  135. 135 Lynch M , Richardson AO 2002 The evolution of spliceosomal introns . Curr. Opin. Genet. Dev . 12 , 701 – 710 . ( 10.1016/S0959-437X(02)00360-X ) 12433585 

  136. 136 Audibert A , Weil D , Dautry F 2002 In vivo kinetics of mRNA splicing and transport in mammalian cells . Mol. Cell. Biol . 22 , 6706 – 6718 . ( 10.1128/MCB.22.19.6706-6718.2002 ) 12215528 

  137. 137 Collins L , Penny D 2005 Complex spliceosomal organization ancestral to extant eukaryotes . Mol. Biol. Evol . 22 , 1053 – 1066 . ( 10.1093/molbev/msi091 ) 15659557 

  138. 138 Rogozin IB , Wolf YI , Sorokin AV , Mirkin BG , Koonin EV 2003 Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution . Curr. Biol . 13 , 1512 – 1517 . ( 10.1016/S0960-9822(03)00558-X ) 12956953 

  139. 139 Roy SW , Gilbert W 2005 Rates of intron loss and gain: implications for early eukaryotic evolution . Proc. Natl Acad. Sci. USA 102 , 5773 – 5778 . ( 10.1073/pnas.0500383102 ) 15827119 

  140. 140 Mans BJ , Anantharaman V , Aravind L , Koonin EV 2004 Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex . Cell Cycle 3 , 1612 – 1637 . ( 10.4161/cc.3.12.1345 ) 15611647 

  141. 141 Staub E , Fiziev P , Rosenthal A , Hinzmann B 2004 Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire . Bioessays 26 , 567 – 581 . ( 10.1002/bies.20032 ) 15112237 

  142. 142 Ptashne M 2013 Epigenetics: core misconcept . Proc. Natl Acad. Sci. USA 110 , 7101 – 7103 . ( 10.1073/pnas.1305399110 ) 23584020 

  143. 143 Tielens AGM , Rotte C , van Hellemond JJ , Martin W 2002 Mitochondria as we don't know them . Trends Biochem. Sci . 27 , 564 – 572 . ( 10.1016/S0968-0004(02)02193-X ) 12417132 

  144. 144 Martin W et al. 2002 Evolutionary analysis of Arabidopsis , cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus . Proc. Natl Acad. Sci. USA 99 , 12 246 – 12 251 . ( 10.1073/pnas.182432999 ) 

  145. 145 Rotte C , Stejskal F , Zhu G , Keithly JS , Martin W 2001 Pyruvate:NADP + oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum : a fusion of pyruvate:ferredoxin oxidoreductase and NADPH-cytochrome P450 reductase . Mol. Biol. Evol . 18 , 710 – 720 . ( 10.1093/oxfordjournals.molbev.a003853 ) 11319255 

  146. 146 Hoffmeister M , van der Klei A , Rotte C , van Grinsven KWA , van Hellemond JJ , Henze K , Tielens AGM , Martin W 2004 Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions . J. Biol. Chem. 279 , 22 422 – 22 429 . ( 10.1074/jbc.M400913200 ) 

  147. 147 Atteia A , van Lis R , Gelius-Dietrich G , Adrait A , Garin J , Joyard J , Rolland N , Martin W 2006 Pyruvate:formate lyase and a novel route of eukaryotic ATP-synthesis in anaerobic Chlamydomonas mitochondria . J. Biol. Chem . 281 , 9909 – 9918 . ( 10.1074/jbc.M507862200 ) 16452484 

  148. 148 Atteia A et al. 2009 A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the α-proteobacterial mitochondrial ancestor . Mol. Biol. Evol. 29 , 1533 – 1548 . ( 10.1093/molbev/msp068 ) 

  149. 149 Atteia A , van Lis R , Tielens AGM , Martin WF 2013 Anaerobic energy metabolism in unicellular photosynthetic eukaryotes . Biochim. Biophys. Acta 1827 , 210 – 223 . ( 10.1016/j.bbabio.2012.08.002 ) 22902601 

  150. 150 Price DC et al. 2012 Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants . Science 335 , 843 – 847 . ( 10.1126/science.1213561 ) 22344442 

  151. 151 Ku C , Roettger M , Zimorski V , Nelson-Sathi S , Sousa FL , Martin WF 2014 Plastid origin: who, when and why? Acta Soc. Bot. Pol. 83 , 281 – 289 . ( 10.5586/asbp.2014.045 ) 

  152. 152 Domman D , Horn M , Embley TM , Williams TA 2015 Plastid establishment did not require a chlamydial partner . Nat. Comm . 6 , 6421 ( 10.1038/ncomms7421 ) 

  153. 153 Deusch O , Landan G , Roettger M , Gruenheit N , Kowallik KV , Allen JF , Martin W , Dagan T 2008 Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor . Mol. Biol. Evol . 25 , 748 – 761 . ( 10.1093/molbev/msn022 ) 18222943 

  154. 154 Dagan T et al. 2013 Genomes of stigonematalean cyanobacteria (Subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids . Genome Biol. Evol. 5 , 31 – 44 . ( 10.1093/gbe/evs117 ) 23221676 

  155. 155 Dolezal P , Likic V , Tachezy J , Lithgow T 2006 Evolution of the molecular machines for protein import into mitochondria . Science 313 , 314 – 318 . ( 10.1126/science.1127895 ) 16857931 

  156. 156 Schleiff EE , Becker TT 2011 Common ground for protein translocation: Access control for mitochondria and chloroplasts . Nat. Rev. Mol. Cell Biol . 12 , 48 – 59 . ( 10.1038/nrm3027 ) 21139638 

  157. 157 Gould SB , Waller RF , McFadden GI 2008 Plastid evolution . Annu. Rev. Plant Biol . 59 , 491 – 517 . ( 10.1146/annurev.arplant.59.032607.092915 ) 18315522 

  158. 158 Curtis BA et al. 2012 Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs . Nature 492 , 59 – 65 . ( 10.1038/nature11681 ) 23201678 

  159. 159 Gould SB 2012 Evolutionary genomics: algae's complex origins . Nature 492 , 46 – 48 . ( 10.1038/nature11759 ) 23201689 

  160. 160 Ball SG et al. 2013 Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis . Plant Cell 25 , 7 – 21 . ( 10.1105/tpc.112.101329 ) 23371946 

  161. 161 Moreira D , Deschamps P 2014 What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes . Cold Spring Harb. Perspect. Biol . 6 , a016014 ( 10.1101/cshperspect.a016014 ) 24984774 

  162. 162 Deschamps P 2014 Primary endosymbiosis: have cyanobacteria and chlamydiae ever been roommates? Acta Soc. Bot. Pol . 83 , 291 – 302 . ( 10.5586/asbp.2014.048 ) 

  163. 163 Degli-Esposti M 2014 Bioenergetic evolution in proteobacteria and mitochondria . Genome Biol. Evol . 6 , 3238 – 3251 . ( 10.1093/gbe/evu257 ) 25432941 

  164. 164 Allen JF 1993 Control of gene-expression by redox potential and the requirement for chloroplast and mitochondrial genomes . J. Theor. Biol . 165 , 609 – 631 . ( 10.1006/jtbi.1993.1210 ) 8114509 

  165. 165 Allen JF 2003 The function of genomes in bioenergetic organelles . Phil. Trans. R. Soc. Lond. B 358 , 19 – 37 . ( 10.1098/rstb.2002.1191 ) 12594916 

  166. 166 Lane N 2015 The vital question: why is life the way it is? London, UK : Profile Books . 

  167. 167 Von Heijne G 1986 Why mitochondria need a genome . FEBS Lett . 198 , 1 – 4 . ( 10.1016/0014-5793(86)81172-3 ) 3514271 

  168. 168 Koonin EV , Yutin N 2014 The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes . Cold Spring Harb. Perspect. Biol . 6 , a016188 ( 10.1101/cshperspect.a016188 ) 24691961 

  169. 169 Williams TA , Foster PG , Nye TMW , Cox CJ , Embley TM 2012 A congruent phylogenomic signal places eukaryotes within the Archaea . Proc. R. Soc. B 279 , 4870 – 4879 . ( 10.1098/rspb.2012.1795 ) 

  170. 170 Petitjean C , Deschamps P , López-García P , Moreira D 2014 Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota . Genome Biol. Evol . 7 , 191 – 204 . ( 10.1093/gbe/evu274 ) 25527841 

  171. 171 Liu YC , Beer LL , Whitman WB 2012 Methanogens: a window into ancient sulphur metabolism . Trends Micobiol . 20 , 251 – 258 . ( 10.1016/j.tim.2012.02.002 ) 

  172. 172 Ueno Y , Yamada K , Yoshida N , Maruyama S , Isozaki Y 2006 Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era . Nature 440 , 516 – 519 . ( 10.1038/nature04584 ) 16554816 

  173. 173 Decker K , Jungermann K , Thauer RK 1970 Energy production in anaerobic organisms . Angew. Chem. Int. Ed . Engl 9 , 138 – 158 . ( 10.1002/anie.197001381 ) 

  174. 174 Proskurowski G , Lilley MD , Seewald JS , Fruh-Green GL , Olson EJ , Lupton JE , Sylva SP , Kelley DS 2008 Abiogenic hydrocarbon production at Lost City hydrothermal field . Science 319 , 604 – 607 . ( 10.1126/science.1151194 ) 18239121 

  175. 175 McCollom TM , Seewald JS 2013 Serpentinites, hydrogen, and life . Elements 9 , 129 – 134 . ( 10.2113/gselements.9.2.129 ) 

  176. 176 Schrenk MO , Brazelton WJ , Lang SQ 2013 Serpentinization, carbon, and deep life . Rev. Mineral. Geochem . 75 , 575 – 606 . ( 10.2138/rmg.2013.75.18 ) 

  177. 177 Russell MJ , Hall AJ , Martin W 2010 Serpentinization as a source of energy at the origin of life . Geobiology 8 , 355 – 371 . ( 10.1111/j.1472-4669.2010.00249.x ) 20572872 

  178. 178 Martin W , Russell MJ 2007 On the origin of biochemistry at an alkaline hydrothermal vent . Phil. Trans. R. Soc. B 362 , 1887 – 1925 . ( 10.1098/rstb.2006.1881 ) 17255002 

  179. 179 Lane N , Martin WF 2012 The origin of membrane bioenergetics . Cell 151 , 1406 – 1416 . ( 10.1016/j.cell.2012.11.050 ) 23260134 

  180. 180 Martin WF , Sousa FL , Lane N 2014 Energy at life's origin . Science 344 , 1092 – 1093 . ( 10.1126/science.1251653 ) 24904143 

  181. 181 Sousa FL , Martin WF 2014 Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism . Biochim. Biophys. Acta 1837 , 964 – 981 . ( 10.1016/j.bbabio.2014.02.001 ) 24513196 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로