$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Gait post-stroke: Pathophysiology and rehabilitation strategies
La marche apres accident vasculaire cerebral : physiopathologie et strategies de reeducation

Neurophysiologie clinique : Clinical neurophysiology, v.45 no.4/5, 2015년, pp.335 - 355  

Beyaert, C. ,  Vasa, R. ,  Frykberg, G.E.

Abstract AI-Helper 아이콘AI-Helper

We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke ga...

주제어

참고문헌 (265)

  1. Neuroreport Ahn 17 10 987 2006 10.1097/01.wnr.0000220128.01597.e0 Can stroke patients walk after complete lateral corticospinal tract injury of the affected hemisphere? 

  2. Disabil Rehabil Alguren 32 7 551 2010 10.3109/09638280903186335 Functioning of stroke survivors - a validation of the ICF core set for stroke in Sweden 

  3. Gait Posture Allen 33 4 538 2011 10.1016/j.gaitpost.2011.01.004 Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking 

  4. J Biomech Allen 45 12 2157 2012 10.1016/j.jbiomech.2012.05.037 Three-dimensional modular control of human walking 

  5. Stroke Res Treat Awad 2014 646230 2014 Do improvements in balance relate to improvements in long-distance walking function after stroke? 

  6. Int J Stroke Batchelor 7 6 482 2012 10.1111/j.1747-4949.2012.00796.x Falls after stroke 

  7. Gait Posture Beaman 31 3 311 2010 10.1016/j.gaitpost.2009.11.011 Differences in self-selected and fastest-comfortable walking in post-stroke hemiparetic persons 

  8. Bernstein 1967 The coordination and regulation of movements 

  9. Gait Posture Beyaert 39 Suppl. 1(0) S59 2014 10.1016/j.gaitpost.2014.04.083 Use of negative heel shoes and pathophysiology of equinus gait in children with cerebral palsy 

  10. J Neurosci Biernaskie 21 14 5272 2001 10.1523/JNEUROSCI.21-14-05272.2001 Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury 

  11. Bobath 1990 Adult hemiplegia: evaluation and treatment 

  12. Top Stroke Rehabil Bogey 14 6 1 2007 10.1310/tsr1406-1 Gait training strategies utilized in poststroke rehabilitation: are we really making a difference? 

  13. J Rehabil Med Bohannon 39 1 14 2007 10.2340/16501977-0018 Muscle strength and muscle training after stroke 

  14. J Physio Borghese 494 Pt 3 863 1996 10.1113/jphysiol.1996.sp021539 Kinematic determinants of human locomotion 

  15. Neurosci Lett Bove 397 3 301 2006 10.1016/j.neulet.2005.12.049 The posture-related interaction between Ia-afferent and descending input on the spinal reflex excitability in humans 

  16. Stroke Bowden 37 3 872 2006 10.1161/01.STR.0000204063.75779.8d Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking 

  17. Neurorehabil Neural Repair Bowden 24 4 328 2010 10.1177/1545968309343215 Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion 

  18. Gait Posture Bruijn 27 3 455 2008 10.1016/j.gaitpost.2007.05.017 Coordination of leg swing, thorax rotations, and pelvis rotations during gait: the organisation of total body angular momentum 

  19. Brunnström 1970 Movement therapy in hemiplegia: a neuropsychological approach 

  20. Restor Neurol Neurosci Buma 31 6 707 2013 Understanding upper limb recovery after stroke 

  21. Neuroimaging Clin N Am Burger 15 2 297 2005 10.1016/j.nic.2005.05.005 Brainstem vascular stroke anatomy 

  22. J Neurol Neurosurg Psychiatry Burne 76 1 47 2005 10.1136/jnnp.2003.034785 The spasticity paradox: movement disorder or disorder of resting limbs? 

  23. Dev Med Child Neurol Burtner 41 11 748 1999 10.1017/S0012162299001516 Stance balance control with orthoses in a group of children with spastic cerebral palsy 

  24. J Neurophysiol Cappellini 103 2 746 2010 10.1152/jn.00499.2009 Motor patterns during walking on a slippery walkway 

  25. Cerebrovasc Dis Carrera 24 1 97 2007 10.1159/000103123 Trends in risk factors, patterns and causes in hospitalized strokes over 25 years: The Lausanne Stroke Registry 

  26. J Appl Physiol Cavagna 21 1 271 1966 10.1152/jappl.1966.21.1.271 Mechanics of walking 

  27. Restor Neurol Neurosci Celnik 22 3-5 261 2004 Modulation of motor function and cortical plasticity in health and disease 

  28. Phys ther Cernak 88 1 88 2008 10.2522/ptj.20070134 Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia 

  29. Chang Gung Med J Chen 30 1 62 2007 Ground reaction force patterns in stroke patients with various degrees of motor recovery determined by plantar dynamic analysis 

  30. Gait Posture Chen 22 1 51 2005 10.1016/j.gaitpost.2004.06.009 Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds 

  31. J Biomech Chen 41 4 877 2008 10.1016/j.jbiomech.2007.10.017 Joint moment work during the stance-to-swing transition in hemiparetic subjects 

  32. Proc Natl Acad Sci U S A Cheung 109 36 14652 2012 10.1073/pnas.1212056109 Muscle synergy patterns as physiological markers of motor cortical damage 

  33. Clin Neurophysiol Chow 123 8 1599 2012 10.1016/j.clinph.2012.01.006 Coactivation of ankle muscles during stance phase of gait in patients with lower limb hypertonia after acquired brain injury 

  34. Exp Brain Res Chow 233 1 125 2015 10.1007/s00221-014-4099-2 Intersegmental coordination of gait after hemorrhagic stroke 

  35. J Neurosci Chvatal 32 35 12237 2012 10.1523/JNEUROSCI.6344-11.2012 Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking 

  36. Front Comput Neurosci Chvatal 7 48 2013 10.3389/fncom.2013.00048 Common muscle synergies for balance and walking 

  37. Brain Cirstea 123 Pt 5 940 2000 10.1093/brain/123.5.940 Compensatory strategies for reaching in stroke 

  38. J Neurophysiol Clark 103 2 844 2010 10.1152/jn.00825.2009 Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke 

  39. Neurorehabil Neural Repair Clark 27 4 335 2013 10.1177/1545968312469833 Eccentric versus concentric resistance training to enhance neuromuscular activation and walking speed following stroke 

  40. Front Hum Neurosci Clark 9 246 2015 10.3389/fnhum.2015.00246 Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies 

  41. Clin Biomech (Bristol, Avon) Combs 27 9 887 2012 10.1016/j.clinbiomech.2012.06.011 Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke 

  42. BMC Med Cooke 8 60 2010 10.1186/1741-7015-8-60 The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis 

  43. Physiother Res Int Cooper 17 3 150 2012 10.1002/pri.528 The relationship of lower limb muscle strength and knee joint hyperextension during the stance phase of gait in hemiparetic stroke patients 

  44. Neuron Corbetta 85 5 927 2015 10.1016/j.neuron.2015.02.027 Common behavioral clusters and subcortical anatomy in stroke 

  45. J Biomech Cruz 42 11 1673 2009 10.1016/j.jbiomech.2009.04.015 Biomechanical impairments and gait adaptations post-stroke: multi-factorial associations 

  46. Trends Neurosci Cullen 35 3 185 2012 10.1016/j.tins.2011.12.001 The vestibular system: multimodal integration and encoding of self-motion for motor control 

  47. Brain Danner 138 Pt 3 577 2015 10.1093/brain/awu372 Human spinal locomotor control is based on flexibly organized burst generators 

  48. Arch Neurol de Freitas 57 4 513 2000 10.1001/archneur.57.4.513 Motor strokes sparing the leg: different lesions and causes 

  49. Semin Ultrasound CT MRI De Mendivil 34 2 131 2013 10.1053/j.sult.2013.01.004 Brainstem stroke: anatomy, clinical and radiological findings 

  50. J Bone Joint Surg Am De Quervain 78 10 1506 1996 10.2106/00004623-199610000-00008 Gait pattern in the early recovery period after stroke 

  51. Trends Neurosci De Zeeuw 21 9 391 1998 10.1016/S0166-2236(98)01310-1 Microcircuitry and function of the inferior olive 

  52. Gait Posture den Otter 19 3 270 2004 10.1016/S0966-6362(03)00071-7 Speed related changes in muscle activity from normal to very slow walking speeds 

  53. Clin Neurophysiol Den Otter 117 1 4 2006 10.1016/j.clinph.2005.08.014 Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis 

  54. Denny-Brown 222 1966 The cerebral control of movement 

  55. Phys Ther Dickstein 84 12 1167 2004 10.1093/ptj/84.12.1167 Motor imagery for gait rehabilitation in post-stroke hemiparesis 

  56. Phys Ther Dickstein 87 7 942 2007 10.2522/ptj.20060331 Motor imagery in physical therapist practice 

  57. Lancet Neurol Dietz 6 8 725 2007 10.1016/S1474-4422(07)70193-X Spastic movement disorder: impaired reflex function and altered muscle mechanics 

  58. Ann N Y Acad Sci Dimitrijevic 860 360 1998 10.1111/j.1749-6632.1998.tb09062.x Evidence for a spinal central pattern generator in humans 

  59. N Engl J Med Dobkin 352 16 1677 2005 10.1056/NEJMcp043511 Clinical practice. Rehabilitation after stroke 

  60. J Rehabil Res Dev Dobkin 51 1 39 2014 10.1682/JRRD.2013.04.0080 Prediction of responders for outcome measures of locomotor Experience Applied Post Stroke trial 

  61. Science Dominici 334 6058 997 2011 10.1126/science.1210617 Locomotor primitives in newborn babies and their development 

  62. J Biomech Donelan 35 1 117 2002 10.1016/S0021-9290(01)00169-5 Simultaneous positive and negative external mechanical work in human walking 

  63. J Ex Biol Donelan 205 Pt 23 3717 2002 10.1242/jeb.205.23.3717 Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking 

  64. Arch Phys Med Rehabil Dorsch 93 6 1072 2012 10.1016/j.apmr.2012.01.005 The strength of the ankle dorsiflexors has a significant contribution to walking speed in people who can walk independently after stroke: an observational study 

  65. Prog Brain Res Drew 143 251 2004 10.1016/S0079-6123(03)43025-2 Cortical and brainstem control of locomotion 

  66. J Physiol Drew 586 5 1239 2008 10.1113/jphysiol.2007.146605 Muscle synergies during locomotion in the cat: a model for motor cortex control 

  67. Arch Phys Med Rehabil Dunsky 89 8 1580 2008 10.1016/j.apmr.2007.12.039 Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis 

  68. Front Comput Neurosci Duysens 7 14 2013 10.3389/fncom.2013.00014 The flexion synergy, mother of all synergies and father of new models of gait 

  69. J Biomech Eng 28 6 753 1995 10.1016/0021-9290(94)00124-M Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? 

  70. Clin Biomech (Bristol, Avon) Fallah-Yakhdani 27 5 485 2012 10.1016/j.clinbiomech.2011.11.006 Determinants of co-contraction during walking before and after arthroplasty for knee osteoarthritis 

  71. J Neuroeng Rehabil Farris 12 24 2015 10.1186/s12984-015-0012-x Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: from individual limbs to lower limb joints 

  72. Gait Posture Feng 39 1 570 2014 10.1016/j.gaitpost.2013.09.009 Motion of the center of mass in children with spastic hemiplegia: balance, energy transfer, and work performed by the affected leg vs. the unaffected leg 

  73. Med Sci Sports Exerc Fong 37 3 447 2005 10.1249/01.MSS.0000155390.41572.DE Lower-extremity gait kinematics on slippery surfaces in construction worksites 

  74. J Biomech Fong 41 4 838 2008 10.1016/j.jbiomech.2007.11.001 Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface 

  75. Front Integr Neurosci Forbes 8 94 2014 Task, muscle and frequency dependent vestibular control of posture 

  76. J Neurophysiol Fox 110 6 1415 2013 10.1152/jn.00676.2012 Modular control of varied locomotor tasks in children with incomplete spinal cord injuries 

  77. Cochrane Database Syst Rev French 4 Cd006073 2007 Repetitive task training for improving functional ability after stroke 

  78. J Geriatr Phys Ther Fritz 32 2 46 2009 10.1519/00139143-200932020-00002 White paper: “walking speed: the sixth vital sign” 

  79. Gait Posture Frykberg 35 1 56 2012 10.1016/j.gaitpost.2011.08.005 Impact of stroke on anterior-posterior force generation prior to seat-off during sit-to-walk 

  80. Eur J Physiother Frykberg 17 2 56 2015 10.3109/21679169.2015.1039575 Neuroplasticity in action post-stroke: challenges for physiotherapists 

  81. J Neurol Phys Ther Fulk 35 2 82 2011 10.1097/NPT.0b013e318218e2f2 Estimating clinically important change in gait speed in people with stroke undergoing outpatient rehabilitation 

  82. NeuroRehabilitation Gale 31 3 331 2012 10.3233/NRE-2012-0800 Neuroimaging predictors of stroke outcome: implications for neurorehabilitation 

  83. Motor Control Garland 13 4 387 2009 10.1123/mcj.13.4.387 Muscle activation patterns and postural control following stroke 

  84. Ann N Y Acad Sci Giszter 1279 114 2013 10.1111/nyas.12065 Motor primitives and synergies in the spinal cord and after injury - the current state of play 

  85. J Neurophysiol Gizzi 106 1 202 2011 10.1152/jn.00727.2010 Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients 

  86. Muscle Nerve Gracies 31 5 552 2005 10.1002/mus.20285 Pathophysiology of spastic paresis. II: emergence of muscle overactivity 

  87. Muscle Nerve Gracies 31 5 535 2005 10.1002/mus.20284 Pathophysiology of spastic paresis. I: paresis and soft tissue changes 

  88. J Neurophysiol Grasso 83 1 288 2000 10.1152/jn.2000.83.1.288 Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture 

  89. Brain Res Rev Guertin 62 1 45 2009 10.1016/j.brainresrev.2009.08.002 The mammalian central pattern generator for locomotion 

  90. J Neurol Phys Ther Hacmon 36 4 173 2012 10.1097/NPT.0b013e31827374c1 Deficits in intersegmental trunk coordination during walking are related to clinical balance and gait function in chronic stroke 

  91. Gait Posture Hendrickson 39 1 177 2014 10.1016/j.gaitpost.2013.06.022 Relationship between asymmetry of quiet standing balance control and walking post-stroke 

  92. Top Stroke Rehabil Hidler 12 2 22 2005 10.1310/RYT5-62N4-CTVX-8JTE Advances in the understanding and treatment of stroke impairment using robotic devices 

  93. Neurorehabil Neural Repair Hidler 23 1 5 2009 10.1177/1545968308326632 Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke 

  94. J Biomech Higginson 39 10 1769 2006 10.1016/j.jbiomech.2005.05.032 Muscle contributions to support during gait in an individual with post-stroke hemiparesis 

  95. Horak 11 1991 Contemporary management of motor control problems. Foundations for physical therapy Assumptions underlying motor control for neurologic rehabilitation 

  96. Stroke Hornby 39 6 1786 2008 10.1161/STROKEAHA.107.504779 Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study 

  97. Arch Phys Med Rehabil Hsu 84 8 1185 2003 10.1016/S0003-9993(03)00030-3 Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke 

  98. J Neurophysiol Hsu 97 4 3024 2007 10.1152/jn.01142.2006 Control and estimation of posture during quiet stance depends on multijoint coordination 

  99. Gait Posture Hurt 41 3 857 2015 10.1016/j.gaitpost.2015.02.004 Limb contribution to increased self-selected walking speeds during body weight support in individuals poststroke 

  100. Arch Phys Med Rehabil Hyndman 83 2 165 2002 10.1053/apmr.2002.28030 Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers 

  101. J Physiol Ivanenko 556 Pt 1 267 2004 10.1113/jphysiol.2003.057174 Five basic muscle activation patterns account for muscle activity during human locomotion 

  102. Neuroscientist Ivanenko 12 4 339 2006 10.1177/1073858406287987 Motor control programs and walking 

  103. J Neurophysiol Ivanenko 99 4 1890 2008 10.1152/jn.01308.2007 On the origin of planar covariation of elevation angles during human locomotion 

  104. Stroke Jang 44 4 1099 2013 10.1161/STROKEAHA.111.000269 Functional role of the corticoreticular pathway in chronic stroke patients 

  105. Gait Posture Jansen 38 4 739 2013 10.1016/j.gaitpost.2013.03.013 Muscle contributions to center of mass acceleration adapt to asymmetric walking in healthy subjects 

  106. Phys Ther Jette 85 3 238 2005 10.1093/ptj/85.3.238 Physical therapy interventions for patients with stroke in inpatient rehabilitation facilities 

  107. Gait Posture Johansson 40 4 549 2014 10.1016/j.gaitpost.2014.06.014 Assessment of arm movements during gait in stroke - the Arm Posture Score 

  108. Gait Posture Jonsdottir 29 3 355 2009 10.1016/j.gaitpost.2009.01.008 Functional resources to increase gait speed in people with stroke: strategies adopted compared to healthy controls 

  109. Arch Phys Med Rehabil Jorgensen 76 1 27 1995 10.1016/S0003-9993(95)80038-7 Recovery of walking function in stroke patients: the Copenhagen Stroke Study 

  110. Gait Posture Kaczmarczyk 30 2 207 2009 10.1016/j.gaitpost.2009.04.010 Gait classification in post-stroke patients using artificial neural networks 

  111. Gait Posture Kaczmarczyk 35 2 214 2012 10.1016/j.gaitpost.2011.09.009 Associations between gait patterns, brain lesion factors and functional recovery in stroke patients 

  112. Phys Ther Kahn 89 5 474 2009 10.2522/ptj.20080237 Rapid and long-term adaptations in gait symmetry following unilateral step training in people with hemiparesis 

  113. Stroke Res Treat Kamphuis 2013 692137 2013 Is weight-bearing asymmetry associated with postural instability after stroke? A systematic review 

  114. Gait Posture Kang 38 4 757 2013 10.1016/j.gaitpost.2013.03.022 Stiffness control of balance during dual task and prospective falls in older adults: the MOBILIZE Boston Study 

  115. Gait Posture Kim 18 1 23 2003 10.1016/S0966-6362(02)00122-4 Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke 

  116. Gait Posture Kim 20 2 140 2004 10.1016/j.gaitpost.2003.07.002 Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed 

  117. Gait Posture Kim 41 2 425 2015 10.1016/j.gaitpost.2014.11.004 The effect of progressive task-oriented training on a supplementary tilt table on lower extremity muscle strength and gait recovery in patients with hemiplegic stroke 

  118. Brain Kim 126 Pt 8 1864 2003 10.1093/brain/awg169 Pure lateral medullary infarction: clinical-radiological correlation of 130 acute, consecutive patients 

  119. J Phys Ther Sci Kim 27 3 607 2015 10.1589/jpts.27.607 Effects of horse-riding exercise on balance, gait, and activities of daily living in stroke patients 

  120. Gait Posture Kinsella 27 1 144 2008 10.1016/j.gaitpost.2007.03.008 Gait pattern categorization of stroke participants with equinus deformity of the foot 

  121. Neurorehabil Neural Repair Kitago 27 2 99 2013 10.1177/1545968312452631 Improvement after constraint-induced movement therapy: recovery of normal motor control or task-specific compensation? 

  122. J Speech Lang Hear Res Kleim 51 1 S225 2008 10.1044/1092-4388(2008/018) Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage 

  123. Knott 1968 Proprioceptive neuromuscular facilitation 

  124. Brain Knutsson 102 2 405 1979 10.1093/brain/102.2.405 Different types of disturbed motor control in gait of hemiparetic patients 

  125. Stroke Kollen 36 12 2676 2005 10.1161/01.STR.0000190839.29234.50 Predicting improvement in gait after stroke: a longitudinal prospective study 

  126. Stroke Kollen 40 4 e89 2009 10.1161/STROKEAHA.108.533828 The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? 

  127. Neurorehabil Neural Repair Krakauer 26 8 923 2012 10.1177/1545968312440745 Getting neurorehabilitation right: what can be learned from animal models? 

  128. J Neurophysiol Krasovsky 109 1 77 2013 10.1152/jn.00552.2012 Reduced gait stability in high-functioning poststroke individuals 

  129. Biol Cybern Kubo 91 2 91 2004 10.1007/s00422-004-0503-5 Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking 

  130. J Neurol Kuker 249 1 33 2002 10.1007/PL00007845 MRI characteristics of acute and subacute brainstem and thalamic infarctions: value of T2- and diffusion-weighted sequences 

  131. J Neurol Kumral 249 12 1659 2002 10.1007/s00415-002-0879-x Clinical spectrum of pontine infarction. Clinical-MRI correlations 

  132. Exerc Sport Sci Rev Kuo 33 2 88 2005 10.1097/00003677-200504000-00006 Energetic consequences of walking like an inverted pendulum: step-to-step transitions 

  133. Phys Ther Kuo 90 2 157 2010 10.2522/ptj.20090125 Dynamic principles of gait and their clinical implications 

  134. Arch Ital Biol Lacquaniti 140 4 263 2002 Kinematic control of walking 

  135. J Physiol Lacquaniti 590 Pt 10 2189 2012 10.1113/jphysiol.2011.215137 Patterned control of human locomotion 

  136. J Electromyogr Kinesiol Lamontagne 10 6 407 2000 10.1016/S1050-6411(00)00028-6 Coactivation during gait as an adaptive behavior after stroke 

  137. Gait Posture Lamoth 16 2 101 2002 10.1016/S0966-6362(01)00146-1 Pelvis-thorax coordination in the transverse plane during gait 

  138. Lance 485 1980 Spasticity: disordered motor control Symposium synopsis 

  139. Physiother Res Int Langhammer 16 2 69 2011 10.1002/pri.474 Can physiotherapy after stroke based on the Bobath concept result in improved quality of movement compared to the motor relearning programme 

  140. Lancet Langhorne 377 9778 1693 2011 10.1016/S0140-6736(11)60325-5 Stroke rehabilitation 

  141. Ann Phys Rehabil Med Laurent 53 2 77 2010 10.1016/j.rehab.2009.12.005 Claw toes in hemiplegic patients after stroke 

  142. Cochrane Database Syst Rev Laver 9 Cd008349 2011 Virtual reality for stroke rehabilitation 

  143. Cochrane Database Syst Rev Laver 2 CD008349 2015 Virtual reality for stroke rehabilitation 

  144. Med Sci Sports Exerc Lee 42 1 23 2010 10.1249/MSS.0b013e3181b07a31 Effect of progressive resistance training on muscle performance after chronic stroke 

  145. Arch Phys Med Rehabil Lehmann 68 11 763 1987 Gait abnormalities in hemiplegia: their correction by ankle-foot orthoses 

  146. Neurorehabil Neural Repair Levin 23 4 313 2009 10.1177/1545968308328727 What do motor “recovery” and “compensation” mean in patients following stroke? 

  147. Motor Control Levin 15 2 285 2011 10.1123/mcj.15.2.285 Sensorimotor integration for functional recovery and the Bobath approach 

  148. J Neurol Phys Ther Lewek 35 3 116 2011 10.1097/NPT.0b013e318227fe70 Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke 

  149. J Appl Biomech Lewek 30 1 31 2014 10.1123/jab.2012-0208 The relationship between spatiotemporal gait asymmetry and balance in individuals with chronic stroke 

  150. Front Hum Neurosci Li 9 192 2015 10.3389/fnhum.2015.00192 New insights into the pathophysiology of post-stroke spasticity 

  151. Dev Med Child Neurol Lin 34 11 949 1992 10.1111/j.1469-8749.1992.tb11400.x Peripheral and central mechanisms of hindfoot equinus in childhood hemiplegia 

  152. J Physiol Loram 564 Pt 1 281 2005 10.1113/jphysiol.2004.073437 Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced? 

  153. Stroke Luft 39 12 3341 2008 10.1161/STROKEAHA.108.527531 Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial 

  154. Top Stroke Rehabil Lum 16 4 237 2009 10.1310/tsr1604-237 Gains in upper extremity function after stroke via recovery or compensation: potential differential effects on amount of real-world limb use 

  155. J Physiol Luu 590 Pt 22 5783 2012 10.1113/jphysiol.2012.230334 Human standing is modified by an unconscious integration of congruent sensory and motor signals 

  156. Stroke Macko 28 2 326 1997 10.1161/01.STR.28.2.326 Treadmill aerobic exercise training reduces the energy expenditure and cardiovascular demands of hemiparetic gait in chronic stroke patients. A preliminary report 

  157. Lancet Magnus 2 531 85 1926 Some results of studies in the physiology of posture 

  158. J Biomech Mahon 48 6 984 2015 10.1016/j.jbiomech.2015.02.006 Individual limb mechanical analysis of gait following stroke 

  159. Phys Ther Malouin 90 2 240 2010 10.2522/ptj.20090029 Mental practice for relearning locomotor skills 

  160. Science Marsh 303 5654 80 2004 10.1126/science.1090704 Partitioning the energetics of walking and running: swinging the limbs is expensive 

  161. Stroke Marshall 31 3 656 2000 10.1161/01.STR.31.3.656 Evolution of cortical activation during recovery from corticospinal tract infarction 

  162. J Neurophysiol Martino 112 11 2810 2014 10.1152/jn.00275.2014 Locomotor patterns in cerebellar ataxia 

  163. Neurorehabil Neural Repair Massaad 24 4 338 2010 10.1177/1545968309349927 Reducing the energy cost of hemiparetic gait using center of mass feedback: a pilot study 

  164. Handb Clin Neurol Massaquoi 103 37 2011 10.1016/B978-0-444-51892-7.00002-4 Physiology of clinical dysfunction of the cerebellum 

  165. Prog Brain Res Massion 143 13 2004 10.1016/S0079-6123(03)43002-1 Why and how are posture and movement coordinated? 

  166. Prog Brain Res Matsuyama 143 239 2004 10.1016/S0079-6123(03)43024-0 Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system 

  167. Neurorehabil Neural Repair Mayr 21 4 307 2007 10.1177/1545968307300697 Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis 

  168. J Biomech McGowan 43 3 412 2010 10.1016/j.jbiomech.2009.10.009 Modular control of human walking: adaptations to altered mechanical demands 

  169. Cochrane Database Syst Rev Mehrholz 7 CD006185 2013 Electromechanical-assisted training for walking after stroke 

  170. Stroke Mehrholz 45 5 e76 2014 10.1161/STROKEAHA.114.004999 Treadmill training for improving walking function after stroke: a major update of a Cochrane review 

  171. Clin Neurophysiol Miller 125 10 2070 2014 10.1016/j.clinph.2014.01.035 Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: evidence for a vestibulospinal role 

  172. J Electromyogr Kinesiol Milot 17 2 184 2007 10.1016/j.jelekin.2006.01.001 Muscular utilization of the plantarflexors, hip flexors and extensors in persons with hemiparesis walking at self-selected and maximal speeds 

  173. J Biomech Mochon 13 1 49 1980 10.1016/0021-9290(80)90007-X Ballistic walking 

  174. J Neurophysiol Mori 41 6 1580 1978 10.1152/jn.1978.41.6.1580 Controlled locomotion in the mesencephalic cat: distribution of facilitatory and inhibitory regions within pontine tegmentum 

  175. Jpn J Physiol Mori 39 6 785 1989 10.2170/jjphysiol.39.785 Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat 

  176. Scand J Rehabil Med Morita 27 1 37 1995 10.2340/1650197795273742 Gait analysis of hemiplegic patients by measurement of ground reaction force 

  177. Neuroscientist Morton 10 3 247 2004 10.1177/1073858404263517 Cerebellar control of balance and locomotion 

  178. Gait Posture Mulroy 18 1 114 2003 10.1016/S0966-6362(02)00165-0 Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke 

  179. J Phys Ther Sci Mun 26 4 483 2014 10.1589/jpts.26.483 Study on the usefulness of sit to stand training in self-directed treatment of stroke patients 

  180. Clin Biomech (Bristol, Avon) Nadeau 14 2 125 1999 10.1016/S0268-0033(98)00062-X Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors 

  181. Tohoku J Exp Med Nakamura 154 3 241 1988 10.1620/tjem.154.241 Walking cycle after stroke 

  182. J Neurol Neurosurg Psychiatry Nardone 70 5 635 2001 10.1136/jnnp.70.5.635 Stance control is not affected by paresis and reflex hyperexcitability: the case of spastic patients 

  183. Gait Posture Nardone 30 1 5 2009 10.1016/j.gaitpost.2009.02.006 Stabilometry is a predictor of gait performance in chronic hemiparetic stroke patients 

  184. J Neuroeng Rehabil Neckel 3 17 2006 10.1186/1743-0003-3-17 Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke 

  185. J Biomech Neptune 34 11 1387 2001 10.1016/S0021-9290(01)00105-1 Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking 

  186. Gait Posture Neptune 19 2 194 2004 10.1016/S0966-6362(03)00062-6 Muscle force redistributes segmental power for body progression during walking 

  187. J Biomech Neptune 42 9 1282 2009 10.1016/j.jbiomech.2009.03.009 Modular control of human walking: a simulation study 

  188. Arch Phys Med Rehabil Ng 93 6 1046 2012 10.1016/j.apmr.2011.12.016 Contribution of ankle dorsiflexor strength to walking endurance in people with spastic hemiplegia after stroke 

  189. Clin Biomech (Bristol, Avon) Nolan 30 7 755 2015 10.1016/j.clinbiomech.2015.03.016 Changes in center of pressure displacement with the use of a foot drop stimulator in individuals with stroke 

  190. J Appl Biomech Novak 29 4 443 2013 10.1123/jab.29.4.443 Kinematic and kinetic evaluation of the stance phase of stair ambulation in persons with stroke and healthy adults: a pilot study 

  191. Gait Posture Öken 27 3 506 2008 10.1016/j.gaitpost.2007.06.007 Repeatability and variation of quantitative gait data in subgroups of patients with stroke 

  192. J Neurophysiol Oliveira 108 7 1895 2012 10.1152/jn.00217.2012 Modular organization of balance control following perturbations during walking 

  193. Gait Posture Olney 4 2 136 1996 10.1016/0966-6362(96)01063-6 Hemiparetic gait following stroke. Part I: characteristics 

  194. Phys Ther Olney 78 8 814 1998 10.1093/ptj/78.8.814 Multivariate examination of data from gait analysis of persons with stroke 

  195. J Exp Psychol Hum Percept Perform Patla 17 3 603 1991 10.1037/0096-1523.17.3.603 Visual control of locomotion: strategies for changing direction and for going over obstacles 

  196. Gait Posture Patterson 31 2 241 2010 10.1016/j.gaitpost.2009.10.014 Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization 

  197. Neurorehabil Neural Repair Patterson 24 9 783 2010 10.1177/1545968310372091 Changes in gait symmetry and velocity after stroke: a cross-sectional study from weeks to years after stroke 

  198. Gait Posture Patterson 35 4 590 2012 10.1016/j.gaitpost.2011.11.030 Gait symmetry and velocity differ in their relationship to age 

  199. J Neuroeng Rehabil Pennycott 9 65 2012 10.1186/1743-0003-9-65 Towards more effective robotic gait training for stroke rehabilitation: a review 

  200. Exp Brain Res Perez 159 2 197 2004 10.1007/s00221-004-1947-5 Motor skill training induces changes in the excitability of the leg cortical area in healthy humans 

  201. Perry 2010 Gait analysis: normal and pathological function 

  202. Neurol Rep Perry 22 1 4 1998 10.1097/01253086-199822010-00007 Clinical implications of a dynamical systems theory 

  203. Gait Posture Peterson 32 4 451 2010 10.1016/j.gaitpost.2010.06.014 Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking 

  204. J Biomech Peterson 43 12 2348 2010 10.1016/j.jbiomech.2010.04.027 Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking 

  205. Gait Posture Peterson 31 3 355 2010 10.1016/j.gaitpost.2009.12.005 Effects of age and walking speed on coactivation and cost of walking in healthy adults 

  206. Cochrane Database Syst Rev Pomeroy 2 CD003241 2006 Electrostimulation for promoting recovery of movement or functional ability after stroke 

  207. Semin Ultrasound CT MRI Querol-Pascual 31 3 220 2010 10.1053/j.sult.2010.03.004 Clinical approach to brainstem lesions 

  208. Brain Reisman 130 Pt 7 1861 2007 10.1093/brain/awm035 Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke 

  209. Neurorehabil Neural Repair Reisman 23 7 735 2009 10.1177/1545968309332880 Split-belt treadmill adaptation transfers to overground walking in persons poststroke 

  210. Phys Ther Reisman 90 2 187 2010 10.2522/ptj.20090073 Neurophysiologic and rehabilitation insights from the split-belt and other locomotor adaptation paradigms 

  211. Neurorehabil Neural Repair Reisman 27 5 460 2013 10.1177/1545968312474118 Repeated split-belt treadmill training improves poststroke step length asymmetry 

  212. Richards 355 1995 Gait analysis: theory and application Gait velocity as an outcome measure of locomotor recovery after stroke 

  213. Gait Posture Richards 4 2 149 1996 10.1016/0966-6362(96)01064-8 Hemiparetic gait following stroke. Part II: recovery and physical therapy 

  214. J Speech Lang Hear Res Robbins 51 1 S276 2008 10.1044/1092-4388(2008/021) Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence 

  215. J Electromyogr Kinesiol Rosa 24 1 1 2014 10.1016/j.jelekin.2013.10.016 Lower limb co-contraction during walking in subjects with stroke: a systematic review 

  216. Gait Posture Routson 38 3 511 2013 10.1016/j.gaitpost.2013.01.020 The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance 

  217. Physiol Rep Routson 2 6 e12055 2014 10.14814/phy2.12055 Modular organization across changing task demands in healthy and poststroke gait 

  218. Stroke Ryan 42 2 416 2011 10.1161/STROKEAHA.110.602441 Skeletal muscle hypertrophy and muscle myostatin reduction after resistive training in stroke survivors 

  219. Am J Phys Med Rehabil Sadeghi 80 1 25 2001 10.1097/00002060-200101000-00007 Muscle power compensatory mechanisms in below-knee amputee gait 

  220. Cochrane Database Syst Rev Saunders 10 CD003316 2013 Physical fitness training for stroke patients 

  221. Stroke Saunders 45 12 3742 2014 10.1161/STROKEAHA.114.004311 Physical activity and exercise after stroke: review of multiple meaningful benefits 

  222. Clin Neurophysiol Savin 125 5 1012 2014 10.1016/j.clinph.2013.10.044 Generalization of improved step length symmetry from treadmill to overground walking in persons with stroke and hemiparesis 

  223. J Neurophysiol Schepens 100 4 2235 2008 10.1152/jn.01381.2007 Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently 

  224. Gait Posture Schmid 37 4 480 2013 10.1016/j.gaitpost.2012.09.006 Secondary gait deviations in patients with and without neurological involvement: a systematic review 

  225. Cogn Sci Schneider 27 3 525 2003 10.1207/s15516709cog2703_8 Controlled & automatic processing: Behavior, theory, and biological mechanisms 

  226. PM & R Schwartz 1 6 516 2009 10.1016/j.pmrj.2009.03.009 The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial 

  227. Harefuah Schwartz 152 3 166 2013 [The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders] 

  228. Front Hum Neurosci Sharma 7 564 2013 10.3389/fnhum.2013.00564 Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis 

  229. Sherrington 1947 The integrative action of the nervous system 

  230. Shumway-Cook 415 2012 Motor control - translating research into clinical practice Clinical management of the patient with a mobility disorder 

  231. N Z J Physiother Signal 42 2 101 2014 Strength training after stroke: rationale, evidence and potential implementation barriers for physiotherapists 

  232. Gait Posture Soo 35 2 292 2012 10.1016/j.gaitpost.2011.09.102 Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking 

  233. Cochrane Database Syst Rev States 3 CD006075 2009 Overground physical therapy gait training for chronic stroke patients with mobility deficits 

  234. J Neuroeng Rehabil Stavric 9 67 2012 10.1186/1743-0003-9-67 Optimizing muscle power after stroke: a cross-sectional study 

  235. Neurosci Res Takakusaki 50 2 137 2004 10.1016/j.neures.2004.06.015 Role of basal ganglia-brainstem pathways in the control of motor behaviors 

  236. Brain Res Rev Takakusaki 57 1 192 2008 10.1016/j.brainresrev.2007.06.024 Forebrain control of locomotor behaviors 

  237. Mov Disord Takakusaki 28 11 1483 2013 10.1002/mds.25669 Neurophysiology of gait: from the spinal cord to the frontal lobe 

  238. Thelen 1989 Development of posture and gait across the life span The developmental origins of locomotion 

  239. J Neurophysiol Ting 81 2 544 1999 10.1152/jn.1999.81.2.544 Phase reversal of biomechanical functions and muscle activity in backward pedaling 

  240. Curr Opin Neurobiol Ting 17 6 622 2007 10.1016/j.conb.2008.01.002 Neuromechanics of muscle synergies for posture and movement 

  241. Stroke Tohgi 24 11 1697 1993 10.1161/01.STR.24.11.1697 Cerebellar infarction. Clinical and neuroimaging analysis in 293 patients 

  242. J Neurophysiol Torres-Oviedo 98 4 2144 2007 10.1152/jn.01360.2006 Muscle synergies characterizing human postural responses 

  243. Arch Phys Med Rehabil Turns 88 9 1127 2007 10.1016/j.apmr.2007.05.027 Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking 

  244. Clin Rehabil Tyson 27 10 879 2013 10.1177/0269215513486497 A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke 

  245. J Biomech van Emmerik 29 9 1175 1996 10.1016/0021-9290(95)00128-X Effects of walking velocity on relative phase dynamics in the trunk in human walking 

  246. Disabil Rehabil Vaughan-Graham 37 21 1909 2015 10.3109/09638288.2014.987880 The Bobath (NDT) concept in adult neurological rehabilitation: what is the state of the knowledge? A scoping review. Part II: intervention studies perspectives 

  247. Disabil Rehabil Vaughan-Graham 37 20 1793 2015 10.3109/09638288.2014.985802 The Bobath (NDT) concept in adult neurological rehabilitation: what is the state of the knowledge? A scoping review. Part I: conceptual perspectives 

  248. PLoS One Veerbeek 9 2 e87987 2014 10.1371/journal.pone.0087987 What is the evidence for physical therapy poststroke? A systematic review and meta-analysis 

  249. Ann Readapt Med Phys Verdié 47 2 81 2004 10.1016/j.annrmp.2003.10.005 Epidemiology of varus equinus one year after an hemispheral stroke 

  250. Curr Opin Neurol Volpe 14 6 745 2001 10.1097/00019052-200112000-00011 Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? 

  251. Scand J Rehabil Med Wagenaar 22 1 1 1990 The functional recovery of stroke: a comparison between neuro-developmental treatment and the Brunnstrom method 

  252. Phys Ther Walker 80 9 886 2000 10.1093/ptj/80.9.886 Use of visual feedback in retraining balance following acute stroke 

  253. Front Syst Neurosci Wall 9 48 2015 10.3389/fnsys.2015.00048 Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review 

  254. J Rehabil Res Dev Weerdesteyn 45 8 1195 2008 10.1682/JRRD.2007.09.0145 Falls in individuals with stroke 

  255. Am J Phys Med Rehabil Welmer 85 2 112 2006 10.1097/01.phm.0000197587.78140.17 Hemiplegic limb synergies in stroke patients 

  256. Stroke Werner 33 12 2895 2002 10.1161/01.STR.0000035734.61539.F6 Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study 

  257. J Neuroeng Rehabil Westlake 6 18 2009 10.1186/1743-0003-6-18 Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke 

  258. Arch Phys Med Rehabil Winstein 70 10 755 1989 Standing balance training: effect on balance and locomotion in hemiparetic adults 

  259. Electroencephalogr Clin Neurophysiol Winter 67 5 402 1987 10.1016/0013-4694(87)90003-4 EMG profiles during normal human walking: stride-to-stride and inter-subject variability 

  260. Winter 2004 Biomechanics and motor control of human movement 

  261. Neurology Wissel 80 3 Suppl. 2 S13 2013 10.1212/WNL.0b013e3182762448 Toward an epidemiology of poststroke spasticity 

  262. Arch Phys Med Rehabil Wong 85 10 1625 2004 10.1016/j.apmr.2003.11.039 Foot contact pattern analysis in hemiplegic stroke patients: an implication for neurologic status determination 

  263. Eur Neurol Yeo 65 6 332 2011 10.1159/000324152 Contribution of the pedunculopontine nucleus on walking in stroke patients 

  264. J Biomech Yeom 44 1 59 2011 10.1016/j.jbiomech.2010.08.024 A gravitational impulse model predicts collision impulse and mechanical work during a step-to-step transition 

  265. J Neurophysiol Zelik 111 8 1686 2014 10.1152/jn.00776.2013 Can modular strategies simplify neural control of multidirectional human locomotion? 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로