$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Expression of HMA4 cDNAs of the zinc hyperaccumulator Noccaea caerulescens from endogenous NcHMA4 promoters does not complement the zinc-deficiency phenotype of the Arabidopsis thaliana hma2hma4 double mutant 원문보기

Frontiers in plant science, v.4, 2013년, pp.404 -   

Iqbal, Mazhar (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands) ,  Nawaz, Ismat (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands) ,  Hassan, Zeshan (Laboratory of Genetics, Wageningen University Wageningen, Netherlands) ,  Hakvoort, Henk W. J. (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands) ,  Bliek, Mattijs (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands) ,  Aarts, Mark G.M. (Laboratory of Genetics, Wageningen University Wageningen, Netherlands) ,  Schat, Henk (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands)

Abstract AI-Helper 아이콘AI-Helper

Noccaea caerulescens (Nc) exhibits a very high constitutive expression of the heavy metal transporting ATPase, HMA4, as compared to the non-hyperaccumulator Arabidopsis thaliana (At), due to copy number expansion and altered cis-regulation. We screened a BAC library for HMA4 and found that HMA4 is t...

Keyword

참고문헌 (48)

  1. Andrés-Colás N. Sancenon V. Rodriguez-Navarro S. Mayo S. Thiele D. J. Ecker J. R. ( 2006 ). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J. 45 225 – 236 10.1111/j.1365-313X.2005.02601.x 16367966 

  2. Antonovics J. Bradshaw A. D. Turner R. G. ( 1971 ). “Heavy metal tolerance in plants,” in Advances in Ecological Research ed. Cragg J. B. ( New York : Academic Press ) 1 – 85 

  3. Assunção A. G. L. Bookum W. M. Nelissen H. J. M. Vooijs R. Schat H Ernst W. H. O. ( 2003 ). Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol. 159 411 – 419 10.1046/j.1469-8137.2003.00819.x 

  4. Assunção A. G. L. Herrero E. Lin Y.-F. Huettel B. Talukdar S. Smaczniak C. ( 2010 ). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl. Acad. Sci . 107 10296 – 10301 10.1073/pnas.1004788107 20479230 

  5. Baker A. J. M. McGrath S. P. Reeves D. R Smith J. A. C. ( 2000 ). “Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils,” in Phytoremediation of Contaminated Soils and Water eds Terry N. Banuelos G. ( Boca Raton, FL : CRC Press LLC ) 171 – 188 

  6. Barabasz A. Wilkowska A. Ruszczyñska A. Bulska E. Hanikenne M. Czarny M. ( 2012 ). Metal response of transgenic tomato plantsexpressing P1B-ATPase. Physiol. Plant. 145 315 – 331 10.1111/j.1399-3054.2012.01584.x 22283486 

  7. Bernard C. Roosens N. Czernic P. Lebrun M. Verbruggen N. ( 2004 ). A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens . FEBS Lett. 569 140 – 148 10.1016/j.febslet.2004.05.036 15225623 

  8. Clemens S. ( 2001 ). Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212 475 – 486 10.1007/s004250000458 11525504 

  9. Clemens S. ( 2006 ). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88 1707 – 1719 10.1016/j.biochi.2006.07.003 16914250 

  10. Clough S. J. Bent A. F. ( 1998 ). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16 735 – 743 10.1046/j.1365-313x.1998.00343.x 10069079 

  11. Cosio C. Martinoia E. Keller C. ( 2004 ). Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 134 716 – 725 10.1104/pp.103.031948 14730081 

  12. Courbot M. Willems G. Motte P. Arvidsson S. Roosens N. Saumitou-Laprade P. ( 2007 ). A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol. 144 1052 – 1065 10.1104/pp.106.095133 17434989 

  13. Craciun A. R. Meyer C. L. Chen J. Roosens N. De Groodt R. Hilson P. ( 2012 ). Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J. Exp. Bot. 63 4179 – 4189 10.1093/jxb/ers104 22581842 

  14. Deinlein U. Weber M. Schmidt H. Rensch S. Trampczynska A. Hansen T. H. ( 2012 ). Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24 708 – 723 10.1105/tpc.111.095000 22374395 

  15. Ernst W. H. O. ( 1974 ). Schwermetallvegetation der Erde . Stuttgart, Germany 

  16. Guerinot M. L. ( 2000 ). The ZIP family of metal transporters. Biochim. Biophys. Acta 1465 190 – 198 10.1016/S0005-2736(00)00138-3 10748254 

  17. Gustin J. L. Loureiro M. E. Kim D. Na G. Tikhonova M. Salt D. E. ( 2009 ). MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J. 57 1116 – 1127 10.1111/j.1365-313X.2008.03754.x 19054361 

  18. Hanikenne M. Talke I. N. Haydon M. J. Lanz C. Nolte A. Motte P. ( 2008 ). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453 391 – 395 10.1038/nature06877 18425111 

  19. Hussain D. Haydon M. J. Wang Y. Wong E. Sherson S. M. Young J. ( 2004 ). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis . Plant Cell 16 1327 – 1339 10.1105/tpc.020487 15100400 

  20. Jack E. Hakvoort H. W. J. Reumer A. Verkleij J. a. C. Schat H Ernst W. H. O. ( 2007 ). Real-time PCR analysis of metallothionein-2b expression in metallicolous and non-metallicolous populations of Silene vulgaris (Moench) Garcke. Environ. Exp. Bot. 59 84 – 91 10.1016/j.envexpbot.2005.10.005 

  21. Kamal M. Ghaly A. E. Mahmoud N Côté R. ( 2004 ). Phytoaccumulation of heavy metals by aquatic plants. Environ. Int. 29 1029 – 1039 10.1016/S0160-4120(03)00091-6 14680885 

  22. Karimi M. Inze D. Depicker A. ( 2002 ). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7 193 – 195 10.1016/S1360-1385(02)02251-3 11992820 

  23. Kim Y. Y. Choi H. Segami S. Cho H. T. Martinoia E. Maeshima M. ( 2009 ). AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis . Plant J. 58 737 – 753 10.1111/j.1365-313X.2009.03818.x 19207208 

  24. Klein M. A. Sekimoto H. Milner M. J. Kochian L. V. ( 2008 ). Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Plant Physiol. 147 2006 – 2016 10.1104/pp.108.119719 18550685 

  25. Küpper H. Kochian L. V. ( 2010 ). Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol. 185 114 – 129 10.1111/j.1469-8137.2009.03051.x 19843304 

  26. Kumar S. Nei M. Dudley J. Tamura K. ( 2008 ). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9 299 – 306 10.1093/bib/bbn017 18417537 

  27. Limpens E. Ramos J. Franken C. Raz V. Compaan B. Franssen H. ( 2004 ). RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula . J. Exp. Bot. 55 983 – 992 10.1093/jxb/erh122 15073217 

  28. Livak K. J. Schmittgen T. D. ( 2001 ). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25 402 – 408 10.1006/meth.2001.1262 11846609 

  29. Macnair M. R. ( 1993 ). The genetics of metal tolerance in vascular plants. New Phytol. 124 541 – 559 10.1111/j.1469-8137.1993.tb03846.x 

  30. Marschner H. ( 1995 ). Mineral Nutrition of Higher Plants 2nd Edn. Academic Press London 

  31. Mohtadi A. Ghaderian S. Schat H. ( 2012 ). A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes. Plant Soil 352 267 – 276 10.1007/s11104-011-0994-5 

  32. Lochlainn S. Bowen H. C. Fray R. G. Hammond J. P. King G. J. White P. J. ( 2011 ). Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens . PLoS ONE 6 : e17814 10.1371/journal.pone.0017814 

  33. Papoyan A. Kochian L. V. ( 2004 ). Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase . Plant Physiol. 136 3814 – 3823 10.1104/pp.104.044503 

  34. Peer W. A. Mamoudian M. Lahner B. Reeves R. D. Murphy A. S. Salt D. E. ( 2003 ). Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol. 159 421 – 430 10.1046/j.1469-8137.2003.00822.x 

  35. Richau K. H. Kozhevnikova A. D. Seregin I. V. Vooijs R. Koevoets P. L. Smith J. A. ( 2009 ). Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens . New Phytol. 183 106 – 116 10.1111/j.1469-8137.2009.02826.x 19368671 

  36. Rivera R. Edwards K. J. Barker J. H. Arnold G. M. Ayad G. Hodgkin T. ( 1999 ). Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42 668 – 675 10.1139/g98-170 10464790 

  37. Sambrook J. Fritsch E. F. Maniatis T. ( 1989 ). Molecular Cloning: A Laboratory Manual , 2nd Edn. New York : Cold Spring Harbor Laboratory Press 

  38. Schat H Ten Bookum W. M. T. ( 1992 ). Genetic control of copper tolerance in Silene vulgaris . Heredity 68 219 – 229 10.1038/hdy.1992.35 

  39. Schat H. Vooijs R. ( 1997 ). Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris : a co-segregation analysis. New Phytol. 136 489 – 496 10.1046/j.1469-8137.1997.00756.x 

  40. Schat H. Vooijs R. Kuiper E. ( 1996 ). Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris . Evolution 50 1888 – 1895 10.2307/2410747 

  41. Shahzad Z. Gosti F. Frerot H. Lacombe E. Roosens N. Saumitou-Laprade P. ( 2010 ). The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri . PLoS Genet. 6 : e1000911 10.1371/journal.pgen.1000911 

  42. Sokal R. R. Rohlf F. J. ( 1981 ). Biometry 2nd Edn San Francisco, Freeman 

  43. Ueno D. Milner M. J. Yamaji N. Yokosho K. Koyama E. Clemencia Zambrano M. ( 2011 ). Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens . Plant J. 66 852 – 862 10.1111/j.1365-313X.2011.04548.x 21457363 

  44. van de Mortel J. E. Almar Villanueva L. Schat H. Kwekkeboom J. Coughlan S. Moerland P. D. ( 2006 ). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens . Plant Physiol. 142 1127 – 1147 10.1104/pp.106.082073 16998091 

  45. van der Ent A. Baker A. M. Reeves R. Pollard A. J. Schat H. ( 2013 ). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362 319 – 334 10.1007/s11104-012-1287-3 

  46. Verret F. Gravot A. Auroy P. Leonhardt N. David P. Nussaume L. ( 2004 ). Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett. 576 306 – 312 10.1016/j.febslet.2004.09.023 15498553 

  47. Willems G. Dräger D. B. Courbot M. Godé C. Verbruggen N. Saumitou-Laprade P. ( 2007 ). The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176 659 – 674 10.1534/genetics.106.064485 

  48. Wong C. K. E. Cobbett C. S. ( 2009 ). HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana . New Phytol. 181 71 – 78 10.1111/j.1469-8137.2008.02638.x 19076718 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로