최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Frontiers in plant science, v.4, 2013년, pp.404 -
Iqbal, Mazhar (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands) , Nawaz, Ismat (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands) , Hassan, Zeshan (Laboratory of Genetics, Wageningen University Wageningen, Netherlands) , Hakvoort, Henk W. J. (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands) , Bliek, Mattijs (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands) , Aarts, Mark G.M. (Laboratory of Genetics, Wageningen University Wageningen, Netherlands) , Schat, Henk (Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands)
Noccaea caerulescens (Nc) exhibits a very high constitutive expression of the heavy metal transporting ATPase, HMA4, as compared to the non-hyperaccumulator Arabidopsis thaliana (At), due to copy number expansion and altered cis-regulation. We screened a BAC library for HMA4 and found that HMA4 is t...
Andrés-Colás N. Sancenon V. Rodriguez-Navarro S. Mayo S. Thiele D. J. Ecker J. R. ( 2006 ). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J. 45 225 – 236 10.1111/j.1365-313X.2005.02601.x 16367966
Antonovics J. Bradshaw A. D. Turner R. G. ( 1971 ). “Heavy metal tolerance in plants,” in Advances in Ecological Research ed. Cragg J. B. ( New York : Academic Press ) 1 – 85
Assunção A. G. L. Bookum W. M. Nelissen H. J. M. Vooijs R. Schat H Ernst W. H. O. ( 2003 ). Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol. 159 411 – 419 10.1046/j.1469-8137.2003.00819.x
Assunção A. G. L. Herrero E. Lin Y.-F. Huettel B. Talukdar S. Smaczniak C. ( 2010 ). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl. Acad. Sci . 107 10296 – 10301 10.1073/pnas.1004788107 20479230
Baker A. J. M. McGrath S. P. Reeves D. R Smith J. A. C. ( 2000 ). “Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils,” in Phytoremediation of Contaminated Soils and Water eds Terry N. Banuelos G. ( Boca Raton, FL : CRC Press LLC ) 171 – 188
Barabasz A. Wilkowska A. Ruszczyñska A. Bulska E. Hanikenne M. Czarny M. ( 2012 ). Metal response of transgenic tomato plantsexpressing P1B-ATPase. Physiol. Plant. 145 315 – 331 10.1111/j.1399-3054.2012.01584.x 22283486
Bernard C. Roosens N. Czernic P. Lebrun M. Verbruggen N. ( 2004 ). A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens . FEBS Lett. 569 140 – 148 10.1016/j.febslet.2004.05.036 15225623
Clemens S. ( 2001 ). Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212 475 – 486 10.1007/s004250000458 11525504
Clemens S. ( 2006 ). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88 1707 – 1719 10.1016/j.biochi.2006.07.003 16914250
Clough S. J. Bent A. F. ( 1998 ). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16 735 – 743 10.1046/j.1365-313x.1998.00343.x 10069079
Cosio C. Martinoia E. Keller C. ( 2004 ). Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 134 716 – 725 10.1104/pp.103.031948 14730081
Courbot M. Willems G. Motte P. Arvidsson S. Roosens N. Saumitou-Laprade P. ( 2007 ). A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol. 144 1052 – 1065 10.1104/pp.106.095133 17434989
Craciun A. R. Meyer C. L. Chen J. Roosens N. De Groodt R. Hilson P. ( 2012 ). Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J. Exp. Bot. 63 4179 – 4189 10.1093/jxb/ers104 22581842
Deinlein U. Weber M. Schmidt H. Rensch S. Trampczynska A. Hansen T. H. ( 2012 ). Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24 708 – 723 10.1105/tpc.111.095000 22374395
Ernst W. H. O. ( 1974 ). Schwermetallvegetation der Erde . Stuttgart, Germany
Guerinot M. L. ( 2000 ). The ZIP family of metal transporters. Biochim. Biophys. Acta 1465 190 – 198 10.1016/S0005-2736(00)00138-3 10748254
Gustin J. L. Loureiro M. E. Kim D. Na G. Tikhonova M. Salt D. E. ( 2009 ). MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J. 57 1116 – 1127 10.1111/j.1365-313X.2008.03754.x 19054361
Hanikenne M. Talke I. N. Haydon M. J. Lanz C. Nolte A. Motte P. ( 2008 ). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453 391 – 395 10.1038/nature06877 18425111
Hussain D. Haydon M. J. Wang Y. Wong E. Sherson S. M. Young J. ( 2004 ). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis . Plant Cell 16 1327 – 1339 10.1105/tpc.020487 15100400
Jack E. Hakvoort H. W. J. Reumer A. Verkleij J. a. C. Schat H Ernst W. H. O. ( 2007 ). Real-time PCR analysis of metallothionein-2b expression in metallicolous and non-metallicolous populations of Silene vulgaris (Moench) Garcke. Environ. Exp. Bot. 59 84 – 91 10.1016/j.envexpbot.2005.10.005
Kamal M. Ghaly A. E. Mahmoud N Côté R. ( 2004 ). Phytoaccumulation of heavy metals by aquatic plants. Environ. Int. 29 1029 – 1039 10.1016/S0160-4120(03)00091-6 14680885
Karimi M. Inze D. Depicker A. ( 2002 ). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7 193 – 195 10.1016/S1360-1385(02)02251-3 11992820
Kim Y. Y. Choi H. Segami S. Cho H. T. Martinoia E. Maeshima M. ( 2009 ). AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis . Plant J. 58 737 – 753 10.1111/j.1365-313X.2009.03818.x 19207208
Klein M. A. Sekimoto H. Milner M. J. Kochian L. V. ( 2008 ). Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Plant Physiol. 147 2006 – 2016 10.1104/pp.108.119719 18550685
Küpper H. Kochian L. V. ( 2010 ). Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol. 185 114 – 129 10.1111/j.1469-8137.2009.03051.x 19843304
Kumar S. Nei M. Dudley J. Tamura K. ( 2008 ). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9 299 – 306 10.1093/bib/bbn017 18417537
Limpens E. Ramos J. Franken C. Raz V. Compaan B. Franssen H. ( 2004 ). RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula . J. Exp. Bot. 55 983 – 992 10.1093/jxb/erh122 15073217
Livak K. J. Schmittgen T. D. ( 2001 ). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25 402 – 408 10.1006/meth.2001.1262 11846609
Macnair M. R. ( 1993 ). The genetics of metal tolerance in vascular plants. New Phytol. 124 541 – 559 10.1111/j.1469-8137.1993.tb03846.x
Marschner H. ( 1995 ). Mineral Nutrition of Higher Plants 2nd Edn. Academic Press London
Mohtadi A. Ghaderian S. Schat H. ( 2012 ). A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes. Plant Soil 352 267 – 276 10.1007/s11104-011-0994-5
Lochlainn S. Bowen H. C. Fray R. G. Hammond J. P. King G. J. White P. J. ( 2011 ). Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens . PLoS ONE 6 : e17814 10.1371/journal.pone.0017814
Papoyan A. Kochian L. V. ( 2004 ). Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase . Plant Physiol. 136 3814 – 3823 10.1104/pp.104.044503
Peer W. A. Mamoudian M. Lahner B. Reeves R. D. Murphy A. S. Salt D. E. ( 2003 ). Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol. 159 421 – 430 10.1046/j.1469-8137.2003.00822.x
Richau K. H. Kozhevnikova A. D. Seregin I. V. Vooijs R. Koevoets P. L. Smith J. A. ( 2009 ). Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens . New Phytol. 183 106 – 116 10.1111/j.1469-8137.2009.02826.x 19368671
Rivera R. Edwards K. J. Barker J. H. Arnold G. M. Ayad G. Hodgkin T. ( 1999 ). Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42 668 – 675 10.1139/g98-170 10464790
Sambrook J. Fritsch E. F. Maniatis T. ( 1989 ). Molecular Cloning: A Laboratory Manual , 2nd Edn. New York : Cold Spring Harbor Laboratory Press
Schat H Ten Bookum W. M. T. ( 1992 ). Genetic control of copper tolerance in Silene vulgaris . Heredity 68 219 – 229 10.1038/hdy.1992.35
Schat H. Vooijs R. ( 1997 ). Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris : a co-segregation analysis. New Phytol. 136 489 – 496 10.1046/j.1469-8137.1997.00756.x
Schat H. Vooijs R. Kuiper E. ( 1996 ). Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris . Evolution 50 1888 – 1895 10.2307/2410747
Shahzad Z. Gosti F. Frerot H. Lacombe E. Roosens N. Saumitou-Laprade P. ( 2010 ). The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri . PLoS Genet. 6 : e1000911 10.1371/journal.pgen.1000911
Sokal R. R. Rohlf F. J. ( 1981 ). Biometry 2nd Edn San Francisco, Freeman
Ueno D. Milner M. J. Yamaji N. Yokosho K. Koyama E. Clemencia Zambrano M. ( 2011 ). Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens . Plant J. 66 852 – 862 10.1111/j.1365-313X.2011.04548.x 21457363
van de Mortel J. E. Almar Villanueva L. Schat H. Kwekkeboom J. Coughlan S. Moerland P. D. ( 2006 ). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens . Plant Physiol. 142 1127 – 1147 10.1104/pp.106.082073 16998091
van der Ent A. Baker A. M. Reeves R. Pollard A. J. Schat H. ( 2013 ). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362 319 – 334 10.1007/s11104-012-1287-3
Verret F. Gravot A. Auroy P. Leonhardt N. David P. Nussaume L. ( 2004 ). Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett. 576 306 – 312 10.1016/j.febslet.2004.09.023 15498553
Willems G. Dräger D. B. Courbot M. Godé C. Verbruggen N. Saumitou-Laprade P. ( 2007 ). The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176 659 – 674 10.1534/genetics.106.064485
Wong C. K. E. Cobbett C. S. ( 2009 ). HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana . New Phytol. 181 71 – 78 10.1111/j.1469-8137.2008.02638.x 19076718
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.