$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Recent advances in 3D printing of biomaterials 원문보기

Journal of biological engineering, v.9, 2015년, pp.4 -   

Chia, Helena N (Department of Bioengineering, Henry Samueli School of Engineering, University of California, 5121 Engineering V, Los Angeles, CA 90095 USA) ,  Wu, Benjamin M (Department of Bioengineering, Henry Samueli School of Engineering, University of California, 5121 Engineering V, Los Angeles, CA 90095 USA)

Abstract AI-Helper 아이콘AI-Helper

3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue...

주제어

참고문헌 (128)

  1. 1. Karande TS Ong JL Agrawal CM Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing Ann Biomed Eng 2004 32 1728 43 15675684 

  2. 2. Hollister SJ Porous scaffold design for tissue engineering Nat Mater 2005 4 518 24 16003400 

  3. 3. Stevens MM George JH Exploring and engineering the cell surface interface Science 2005 310 1135 8 16293749 

  4. 4. Winder J Bibb R Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery J Oral Maxillofac Surg 2005 63 1006 15 16003630 

  5. 5. Colin A Boire J-Y A novel tool for rapid prototyping and development of simple 3D medical image processing applications on PCs Comput Methods Programs Biomed 1997 53 87 92 9186045 

  6. 6. Winder J Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates J Med Eng Technol 1999 23 26 8 10202700 

  7. 7. Hollister S Maddox R Taboas J Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints Biomaterials 2002 23 4095 103 12182311 

  8. 8. Cima MJ, Sachs E, Cima LG, Yoo J, Khanuja S, Borland SW, et al. Computer-derived microstructures by 3D printing: bio-and structural materials. Solid Freeform Fabr Symp Proc: DTIC Document; 1994. p. 181-90 

  9. 9. Griffith LG Wu B Cima MJ Powers MJ Chaignaud B Vacanti JP In Vitro Organogenesis of Liver Tissuea Ann N Y Acad Sci 1997 831 382 97 9616729 

  10. 10. Wu BM Borland SW Giordano RA Cima LG Sachs EM Cima MJ Solid free-form fabrication of drug delivery devices J Control Release 1996 40 77 87 

  11. 11. Billiet T Vandenhaute M Schelfhout J Van Vlierberghe S Dubruel P A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering Biomaterials 2012 33 6020 41 22681979 

  12. 12. Wu BM Cima MJ Effects of solvent‐particle interaction kinetics on microstructure formation during three‐dimensional printing Polymer Eng Sci 1999 39 249 60 

  13. 13. Kim SS Utsunomiya H Koski JA Wu BM Cima MJ Sohn J Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels Ann Surg 1998 228 8 9671060 

  14. 14. Lam CXF Mo XM Teoh SH Hutmacher DW Scaffold development using 3D printing with a starch-based polymer Mater Sci Eng C 2002 20 49 56 

  15. 15. Zeltinger J Sherwood JK Graham DA Müeller R Griffith LG Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition Tissue Eng 2001 7 557 72 11694190 

  16. 16. Seitz H Rieder W Irsen S Leukers B Tille C Three‐dimensional printing of porous ceramic scaffolds for bone tissue engineering J Biomed Mater Res B Appl Biomater 2005 74 782 8 15981173 

  17. 17. Lee M Dunn JCY Wu BM Scaffold fabrication by indirect three-dimensional printing Biomaterials 2005 26 4281 9 15683652 

  18. 18. Lee M Wu BM Dunn JCY Effect of scaffold architecture and pore size on smooth muscle cell growth J Biomed Mater Res A 2008 87 1010 6 18257081 

  19. 19. Sherwood JK Riley SL Palazzolo R Brown SC Monkhouse DC Coates M A three-dimensional osteochondral composite scaffold for articular cartilage repair Biomaterials 2002 23 4739 51 12361612 

  20. 20. Shanjani Y Croos D Amritha J Pilliar RM Kandel RA Toyserkani E Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes J Biomed Mater Res B Appl Biomater 2010 93 510 9 20162726 

  21. 21. Seitz H Deisinger U Leukers B Detsch R Ziegler G Different Calcium Phosphate Granules for 3‐D Printing of Bone Tissue Engineering Scaffolds Adv Eng Mater 2009 11 B41 B6 

  22. 22. Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B. In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl. 2010. 

  23. 23. Warnke PH Seitz H Warnke F Becker ST Sivananthan S Sherry E Ceramic scaffolds produced by computer‐assisted 3D printing and sintering: Characterization and biocompatibility investigations J Biomed Mater Res B Appl Biomater 2010 93 212 7 20091914 

  24. 24. Abarrategi A Moreno-Vicente C Martínez-Vázquez FJ Civantos A Ramos V Sanz-Casado JV Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation PLoS One 2012 7 e34117 22470527 

  25. 25. Becker ST Bolte H Krapf O Seitz H Douglas T Sivananthan S Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction Oral Oncol 2009 45 e181 e8 19720558 

  26. 26. Tamimi F Torres J Gbureck U Lopez-Cabarcos E Bassett DC Alkhraisat MH Craniofacial vertical bone augmentation: a comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit Biomaterials 2009 30 6318 26 19695698 

  27. 27. Butscher A Bohner M Roth C Ernstberger A Heuberger R Doebelin N Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds Acta Biomater 2012 8 373 85 21925623 

  28. 28. Tarafder S Balla VK Davies NM Bandyopadhyay A Bose S Microwave‐sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering J Tissue Eng Regen Med 2013 7 631 41 22396130 

  29. 29. Santos CF Silva AP Lopes L Pires I Correia IJ Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration Mater Sci Eng C 2012 32 1293 8 

  30. 30. Tarafder S Davies NM Bandyopadhyay A Bose S 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model Biomater Sci 2013 1 1250 9 24729867 

  31. 31. Tarafder S, Dernell WS, Bandyopadhyay A, Bose S. SrO‐and MgO‐doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res Part B: Appl Biomat. 2014 

  32. 32. Suwanprateeb J Sanngam R Suvannapruk W Panyathanmaporn T Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing J Mater Sci Mater Med 2009 20 1281 9 19225870 

  33. 33. Inzana JA Olvera D Fuller SM Kelly JP Graeve OA Schwarz EM 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration Biomaterials 2014 35 4026 34 24529628 

  34. 34. Ge Z Wang L Heng BC Tian X-F Lu K Fan VTW Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds J Biomater Appl 2009 23 533 47 18757495 

  35. 35. Klammert U Vorndran E Reuther T Müller FA Zorn K Gbureck U Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing J Mater Sci Mater Med 2010 21 2947 53 20740307 

  36. 36. Lee J-Y Choi B Wu B Lee M Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering Biofabrication 2013 5 045003 24060622 

  37. 37. Bose S Vahabzadeh S Bandyopadhyay A Bone tissue engineering using 3D printing Mater Today 2013 16 496 504 

  38. 38. Zein I Hutmacher DW Tan KC Teoh SH Fused deposition modeling of novel scaffold architectures for tissue engineering applications Biomaterials 2002 23 1169 85 11791921 

  39. 39. van Noort R The future of dental devices is digital Dent Mater 2012 28 3 12 22119539 

  40. 40. Hutmacher DW Schantz T Zein I Ng KW Teoh SH Tan KC Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling J Biomed Mater Res 2001 55 203 16 11255172 

  41. 41. Park SH Park DS Shin JW Kang YG Kim HK Yoon TR Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA J Mater Sci Mater Med 2012 23 2671 8 22990617 

  42. 42. Kim J McBride S Tellis B Alvarez-Urena P Song Y-H Dean DD Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model Biofabrication 2012 4 025003 22427485 

  43. 43. Woodfield TB Malda J De Wijn J Peters F Riesle J van Blitterswijk CA Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique Biomaterials 2004 25 4149 61 15046905 

  44. 44. Kalita SJ Bose S Hosick HL Bandyopadhyay A Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling Mater Sci Eng C 2003 23 611 20 

  45. 45. Rai B Teoh SH Ho KH Hutmacher DW Cao T Chen F The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds Biomaterials 2004 25 5499 506 15142731 

  46. 46. Korpela J Kokkari A Korhonen H Malin M Närhi T Seppälä J Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling J Biomed Mater Res B Appl Biomater 2013 101 610 9 23281260 

  47. 47. Yen H-J Tseng C-S S-h H Tsai C-L Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen Biomed Microdevices 2009 11 615 24 19104940 

  48. 48. Teo EY Ong S-Y Khoon Chong MS Zhang Z Lu J Moochhala S Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds Biomaterials 2011 32 279 87 20870283 

  49. 49. Probst F Hutmacher D Müller D Machens H Schantz J Calvarial reconstruction by customized bioactive implant Handchir Mikrochir Plast Chir 2010 42 369 73 20221990 

  50. 50. Shim J-H Moon T-S Yun M-J Jeon Y-C Jeong C-M Cho D-W Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology J Mater Sci Mater Med 2012 23 2993 3002 22960800 

  51. 51. Kim JY Cho D-W Blended PCL/PLGA scaffold fabrication using multi-head deposition system Microelectron Eng 2009 86 1447 50 

  52. 52. Van Bael S Desmet T Chai YC Pyka G Dubruel P Kruth J-P In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration Mater Sci Eng C 2013 33 3404 12 

  53. 53. Kang S-W Bae J-H Park S-A Kim W-D Park M-S Ko Y-J Combination therapy with BMP-2 and BMSCs enhances bone healing efficacy of PCL scaffold fabricated using the 3D plotting system in a large segmental defect model Biotechnol Lett 2012 34 1375 84 22447098 

  54. 54. Shim J-H Lee J-S Kim JY Cho D-W Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system J Micromech Microeng 2012 22 085014 

  55. 55. Espalin D Arcaute K Rodriguez D Medina F Posner M Wicker R Fused deposition modeling of patient-specific polymethylmethacrylate implants Rapid Prototyping J 2010 16 164 73 

  56. 56. Arburg. 3D printing with freeform from ARBURG. 

  57. 57. Dowler C Automatic model building cuts design time, costs Plastics Eng 1989 45 43 5 

  58. 58. Fisher JP Dean D Mikos AG Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly (propylene fumarate) biomaterials Biomaterials 2002 23 4333 43 12219823 

  59. 59. Melchels FP Feijen J Grijpma DW A review on stereolithography and its applications in biomedical engineering Biomaterials 2010 31 6121 30 20478613 

  60. 60. Wang WL Cheah CM Fuh JYH Lu L Influence of process parameters on stereolithography part shrinkage Mater Design 1996 17 205 13 

  61. 61. Heller C Schwentenwein M Russmueller G Varga F Stampfl J Liska R Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing J Polym Sci A Polym Chem 2009 47 6941 54 

  62. 62. Lee K-W Wang S Fox BC Ritman EL Yaszemski MJ Lu L Poly (propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters Biomacromolecules 2007 8 1077 84 17326677 

  63. 63. Jansen J Melchels FP Grijpma DW Feijen J Fumaric acid monoethyl ester-functionalized poly (d, l-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography Biomacromolecules 2008 10 214 20 19090782 

  64. 64. Kang H-W Cho D-W Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a wide range of biomaterial selectivity Tissue Eng Part C Methods 2012 18 719 29 22443315 

  65. 65. Park JH Jung JW Kang H-W Cho D-W Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process Biofabrication 2014 6 025003 24658060 

  66. 66. Zhang X Jiang X Sun C Micro-stereolithography of polymeric and ceramic microstructures Sens Actuators A: Phys 1999 77 149 56 

  67. 67. Arcaute K Mann B Wicker R Stereolithography of spatially controlled multi-material bioactive poly (ethylene glycol) scaffolds Acta Biomater 2010 6 1047 54 19683602 

  68. 68. Choi J-W Wicker R Lee S-H Choi K-H Ha C-S Chung I Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography J Mater Process Technol 2009 209 5494 503 

  69. 69. Elomaa L Teixeira S Hakala R Korhonen H Grijpma DW Seppälä JV Preparation of poly (ε-caprolactone)-based tissue engineering scaffolds by stereolithography Acta Biomater 2011 7 3850 6 21763796 

  70. 70. Melchels FP Feijen J Grijpma DW A poly (D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography Biomaterials 2009 30 3801 9 19406467 

  71. 71. Seck TM Melchels FP Feijen J Grijpma DW Designed biodegradable hydrogel structures prepared by stereolithography using poly (ethylene glycol)/poly (d, l-lactide)-based resins J Control Release 2010 148 34 41 20659509 

  72. 72. Shin JH Lee JW Jung JH Cho D-W Lim G Evaluation of cell proliferation and differentiation on a poly (propylene fumarate) 3D scaffold treated with functional peptides J Mater Sci 2011 46 5282 7 

  73. 73. Kim K Dean D Wallace J Breithaupt R Mikos AG Fisher JP The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells Biomaterials 2011 32 3750 63 21396709 

  74. 74. Lee JW Kang KS Lee SH Kim J-Y Lee B-K Cho D-W Bone regeneration using a microstereolithography-produced customized poly (propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres Biomaterials 2011 32 744 52 20933279 

  75. 75. Lee JW Ahn G Kim DS Cho D-W Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography Microelectron Eng 2009 86 1465 7 

  76. 76. Schüller‐Ravoo S Feijen J Grijpma DW Preparation of flexible and elastic poly (trimethylene carbonate) structures by stereolithography Macromol Biosci 2011 11 1662 71 22006829 

  77. 77. Schüller‐Ravoo S Teixeira SM Feijen J Grijpma DW Poot AA Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly (trimethylene carbonate)‐Based Resins Macromol Biosci 2013 13 1711 9 24214105 

  78. 78. Gauvin R Chen Y-C Lee JW Soman P Zorlutuna P Nichol JW Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography Biomaterials 2012 33 3824 34 22365811 

  79. 79. Kim K Yeatts A Dean D Fisher JP Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression Tissue Eng Part B Rev 2010 16 523 39 20504065 

  80. 80. Melchels FP Barradas A Van Blitterswijk CA De Boer J Feijen J Grijpma DW Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing Acta Biomater 2010 6 4208 17 20561602 

  81. 81. Chan V Zorlutuna P Jeong JH Kong H Bashir R Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation Lab Chip 2010 10 2062 70 20603661 

  82. 82. Cui X Breitenkamp K Finn M Lotz M D'Lima DD Direct human cartilage repair using three-dimensional bioprinting technology Tissue Eng Part A 2012 18 1304 12 22394017 

  83. 83. Pattanayak DK Fukuda A Matsushita T Takemoto M Fujibayashi S Sasaki K Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments Acta Biomater 2011 7 1398 406 20883832 

  84. 84. Lohfeld S Tyndyk M Cahill S Flaherty N Barron V McHugh P A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering J Biomed Sci Eng 2010 3 138 47 

  85. 85. Wiria FE Leong KF Chua CK Liu Y Poly- ε -caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering Acta Biomater 2007 3 1 12 17055789 

  86. 86. Tan K Chua C Leong K Cheah C Cheang P Abu Bakar M Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends Biomaterials 2003 24 3115 23 12895584 

  87. 87. Yeong W Sudarmadji N Yu H Chua C Leong K Venkatraman S Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering Acta Biomater 2010 6 2028 34 20026436 

  88. 88. Tan KH Chua CK Leong KF Cheah CM Gui WS Tan WS Selective laser sintering of biocompatible polymers for applications in tissue engineering Bio-Med Mater Eng 2005 15 113 24 

  89. 89. Chua C Leong K Tan K Wiria F Cheah C Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects J Mater Sci Mater Med 2004 15 1113 21 15516872 

  90. 90. Williams JM Adewunmi A Schek RM Flanagan CL Krebsbach PH Feinberg SE Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering Biomaterials 2005 26 4817 27 15763261 

  91. 91. Nickels L World's first patient-specific jaw implant Metal Powder Report 2012 67 12 4 

  92. 92. Eshraghi S Das S Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering Acta Biomater 2010 6 2467 76 20144914 

  93. 93. Sudarmadji N Tan J Leong K Chua C Loh Y Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds Acta Biomater 2011 7 530 7 20883840 

  94. 94. Giannitelli S Accoto D Trombetta M Rainer A Current trends in the design of scaffolds for computer-aided tissue engineering Acta Biomater 2014 10 580 94 24184176 

  95. 95. Eshraghi S Das S Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering Acta Biomater 2012 8 3138 43 22522129 

  96. 96. Eosoly S Brabazon D Lohfeld S Looney L Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds Acta Biomater 2010 6 2511 7 19616649 

  97. 97. Kang H Hollister SJ La Marca F Park P Lin C-Y Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering J Biomech Eng 2013 135 101013 23897113 

  98. 98. Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC. Osteogenesis of adipose‐derived stem cells on polycaprolactone–β‐tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regenerative Med. 2013. 

  99. 99. Duan B Wang M Zhou WY Cheung WL Li ZY Lu WW Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering Acta Biomater 2010 6 4495 505 20601244 

  100. 100. Duan B Wang M Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor J R Soc Interface 2010 7 S615 S29 20504805 

  101. 101. Shuai C Mao Z Lu H Nie Y Hu H Peng S Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering Biofabrication 2013 5 015014 23385303 

  102. 102. Duan B Wang M Encapsulation and release of biomolecules from Ca–P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering Polym Degrad Stab 2010 95 1655 64 

  103. 103. Xia Y Zhou P Cheng X Xie Y Liang C Li C Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications Int J Nanomedicine 2013 8 4197 24204147 

  104. 104. C-j S Z-z M Z-k H S-p P Preparation of complex porous scaffolds via selective laser sintering of poly (vinyl alcohol)/calcium silicate Journal of Bioactive and Compatible Polymers: Biomedical Applications 2014 29 110 20 

  105. 105. Landers R Mülhaupt R Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer‐assisted design combined with computer‐guided 3D plotting of polymers and reactive oligomers Macromol Mater Eng 2000 282 17 21 

  106. 106. Landers R Hübner U Schmelzeisen R Mülhaupt R Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering Biomaterials 2002 23 4437 47 12322962 

  107. 107. Maher P, Keatch R, Donnelly K, Paxton J. Formed 3D bio-scaffolds via rapid prototyping technology. 4th European Conference of the International Federation for Medical and Biological Engineering: Springer; 2009. p. 2200-4. 

  108. 108. Pataky K Braschler T Negro A Renaud P Lutolf MP Brugger J Microdrop Printing of Hydrogel Bioinks into 3D Tissue‐Like Geometries Adv Mater 2012 24 391 6 22161949 

  109. 109. Haberstroh K Ritter K Kuschnierz J Bormann KH Kaps C Carvalho C Bone repair by cell‐seeded 3D‐bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate‐chitosan‐collagen hydrogel or PLGA in ovine critical‐sized calvarial defects J Biomed Mater Res B Appl Biomater 2010 93 520 30 20225216 

  110. 110. Cohen DL Malone E Lipson H Bonassar LJ Direct freeform fabrication of seeded hydrogels in arbitrary geometries Tissue Eng 2006 12 1325 35 16771645 

  111. 111. Nakamura M Kobayashi A Takagi F Watanabe A Hiruma Y Ohuchi K Biocompatible inkjet printing technique for designed seeding of individual living cells Tissue Eng 2005 11 1658 66 16411811 

  112. 112. Odde DJ Renn MJ Laser‐guided direct writing of living cells Biotechnol Bioeng 2000 67 312 8 10620261 

  113. 113. Koch L Kuhn S Sorg H Gruene M Schlie S Gaebel R Laser printing of skin cells and human stem cells Tissue Eng Part C Methods 2009 16 847 54 19883209 

  114. 114. Moon S Hasan SK Song YS Xu F Keles HO Manzur F Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets Tissue Eng Part C Methods 2009 16 157 66 19586367 

  115. 115. Lim TC Chian KS Leong KF Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo‐vascularization and cellular infiltration J Biomed Mater Res A 2010 94 1303 11 20694998 

  116. 116. Lee H, Kim Y, Kim S, Kim G. Mineralized biomimetic collagen/alginate/silica composite scaffolds fabricated by a low-temperature bio-plotting process for hard tissue regeneration: fabrication, characterisation and in vitro cellular activities. J Mater Chem B. 2014. 

  117. 117. Chien KB Makridakis E Shah RN Three-dimensional printing of soy protein scaffolds for tissue regeneration Tissue Eng Part C Methods 2012 19 417 26 23102234 

  118. 118. Chien KB Aguado BA Bryce PJ Shah RN In vivo acute and humoral response to three-dimensional porous soy protein scaffolds Acta Biomater 2013 9 8983 90 23851173 

  119. 119. Norotte C Marga FS Niklason LE Forgacs G Scaffold-free vascular tissue engineering using bioprinting Biomaterials 2009 30 5910 7 19664819 

  120. 120. Skardal A Zhang J Prestwich GD Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates Biomaterials 2010 31 6173 81 20546891 

  121. 121. Cui X Boland T Human microvasculature fabrication using thermal inkjet printing technology Biomaterials 2009 30 6221 7 19695697 

  122. 122. Zhang K, Chou C-K, Xia X, Hung M-C, Qin L. Block-Cell-Printing for live single-cell printing. Proceedings of the National Academy of Sciences. 2014:201313661 

  123. 123. Ahn S Lee H Lee EJ Kim G A direct cell printing supplemented with low-temperature processing method for obtaining highly porous three-dimensional cell-laden scaffolds J Mater Chem B 2014 2 2773 82 

  124. 124. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing‐based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regenerative Med. 2013. 

  125. 125. Lee J-S Hong JM Jung JW Shim J-H Oh J-H Cho D-W 3D printing of composite tissue with complex shape applied to ear regeneration Biofabrication 2014 6 024103 24464765 

  126. 126. Pati F, Jang J, Ha D-H, Kim SW, Rhie J-W, Shim J-H, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5 

  127. 127. Xu T Jin J Gregory C Hickman JJ Boland T Inkjet printing of viable mammalian cells Biomaterials 2005 26 93 9 15193884 

  128. 128. Dunn JCY Chan WY Cristini V Kim JS Lowengrub J Singh S Analysis of cell growth in three-dimensional scaffolds Tissue Eng 2006 12 705 16 16674285 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로