$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Polystyrene‐Templated Aerosol Synthesis of MoS2-Amorphous Carbon Composite with Open Macropores as Battery Electrode

ChemSusChem, v.8 no.13, 2015년, pp.2260 - 2267  

Choi, Seung Ho ,  Kang, Yun Chan

Abstract AI-Helper 아이콘AI-Helper

AbstractMoS2-amorphous carbon (MoS2-AC) composite microspheres with macroporous structure were fabricated by one‐pot spray pyrolysis. Single‐ or few‐layered MoS2 were uniformly dispersed and oriented in random directions in the amorphous carbon microsphere with macropores sizes ...

참고문헌 (70)

  1. Long, J. W., Dunn, B., Rolison, D. R., White, H. S.. Three-Dimensional Battery Architectures. Chemical reviews, vol.104, no.10, 4463-4492.

  2. Wang, Ying, Cao, Guozhong. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries. Advanced materials, vol.20, no.12, 2251-2269.

  3. Zhang, Huigang, Yu, Xindi, Braun, Paul V.. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature nanotechnology, vol.6, no.5, 277-281.

  4. Vu, Anh, Qian, Yuqiang, Stein, Andreas. Porous Electrode Materials for Lithium‐Ion Batteries - How to Prepare Them and What Makes Them Special. Advanced energy materials, vol.2, no.9, 1056-1085.

  5. Cong, Huai-Ping, Chen, Jia-Fu, Yu, Shu-Hong. Graphene-based macroscopic assemblies and architectures: an emerging material system. Chemical Society reviews, vol.43, no.21, 7295-7325.

  6. Mukherjee, R., Krishnan, R., Lu, T.M., Koratkar, N.. Nanostructured electrodes for high-power lithium ion batteries. Nano energy, vol.1, no.4, 518-533.

  7. Nardecchia, Stefania, Carriazo, Daniel, Ferrer, M. Luisa, Gutiérrez, María C., del Monte, Francisco. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chemical Society reviews, vol.42, no.2, 794-830.

  8. Ye, Youngjin, Jo, Changshin, Jeong, Inyoung, Lee, Jinwoo. Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. Nanoscale, vol.5, no.11, 4584-.

  9. Choi, Bong Gill, Yang, MinHo, Hong, Won Hi, Choi, Jang Wook, Huh, Yun Suk. 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS nano, vol.6, no.5, 4020-4028.

  10. Huang, Chun‐Hsien, Zhang, Qiang, Chou, Tsu‐Chin, Chen, Cheng‐Meng, Su, Dang Sheng, Doong, Ruey‐An. Three‐Dimensional Hierarchically Ordered Porous Carbons with Partially Graphitic Nanostructures for Electrochemical Capacitive Energy Storage. ChemSusChem, vol.5, no.3, 563-571.

  11. Parlett, Christopher M. A., Wilson, Karen, Lee, Adam F.. Hierarchical porous materials: catalytic applications. Chemical Society reviews, vol.42, no.9, 3876-3893.

  12. Wu, Z.S., Zhou, G., Yin, L.C., Ren, W., Li, F., Cheng, H.M.. Graphene/metal oxide composite electrode materials for energy storage. Nano energy, vol.1, no.1, 107-131.

  13. Fattakhova-Rohlfing, Dina, Zaleska, Adriana, Bein, Thomas. Three-Dimensional Titanium Dioxide Nanomaterials. Chemical reviews, vol.114, no.19, 9487-9558.

  14. Bayne, Lauren, Ulijn, Rein V., Halling, Peter J.. Effect of pore size on the performance of immobilised enzymes. Chemical Society reviews, vol.42, no.23, 9000-9010.

  15. Guo, Ziyang, Zhou, Dandan, Dong, XiaoLi, Qiu, Zijie, Wang, Yonggang, Xia, Yongyao. Ordered Hierarchical Mesoporous/Macroporous Carbon: A High‐Performance Catalyst for Rechargeable Li–O2 Batteries. Advanced materials, vol.25, no.39, 5668-5672.

  16. Taberna, P. L., Mitra, S., Poizot, P., Simon, P., Tarascon, J.-M.. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature materials, vol.5, no.7, 567-573.

  17. Wang, Wenshou, Sa, Qina, Chen, Jihua, Wang, Yan, Jung, Heejung, Yin, Yadong. Porous TiO2/C Nanocomposite Shells As a High-Performance Anode Material for Lithium-Ion Batteries. ACS applied materials & interfaces, vol.5, no.14, 6478-6483.

  18. Ko, You Na, Park, Seung Bin, Kang, Yun Chan. Design and Fabrication of New Nanostructured SnO2‐Carbon Composite Microspheres for Fast and Stable Lithium Storage Performance. Small, vol.10, no.16, 3240-3245.

  19. Huang, Xin, Yu, Hong, Chen, Jing, Lu, Ziyang, Yazami, Rachid, Hng, Huey Hoon. Ultrahigh Rate Capabilities of Lithium‐Ion Batteries from 3D Ordered Hierarchically Porous Electrodes with Entrapped Active Nanoparticles Configuration. Advanced materials, vol.26, no.8, 1296-1303.

  20. Huang, Xin, Chen, Jing, Lu, Ziyang, Yu, Hong, Yan, Qingyu, Hng, Huey Hoon. Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for lithium-ion batteries. Scientific reports, vol.3, 2317-.

  21. Fu, Lijun, Tang, Kun, Song, Kepeng, van Aken, Peter A., Yu, Yan, Maier, Joachim. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale, vol.6, no.3, 1384-1389.

  22. Uchaker, E., Cao, G.. Mesocrystals as electrode materials for lithium-ion batteries. Nano today, vol.9, no.4, 499-524.

  23. Yan, Yang, Yin, Ya‐Xia, Guo, Yu‐Guo, Wan, Li‐Jun. A Sandwich‐Like Hierarchically Porous Carbon/Graphene Composite as a High‐Performance Anode Material for Sodium‐Ion Batteries. Advanced energy materials, vol.4, no.8, 1301584-.

  24. Li, Xiaolin, Gu, Meng, Hu, Shenyang, Kennard, Rhiannon, Yan, Pengfei, Chen, Xilin, Wang, Chongmin, Sailor, Michael J., Zhang, Ji-Guang, Liu, Jun. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature communications, vol.5, 4105-.

  25. Mai, Liqiang, Tian, Xiaocong, Xu, Xu, Chang, Liang, Xu, Lin. Nanowire Electrodes for Electrochemical Energy Storage Devices. Chemical reviews, vol.114, no.23, 11828-11862.

  26. An, Qinyou, Lv, Fan, Liu, Qiuqi, Han, Chunhua, Zhao, Kangning, Sheng, Jinzhi, Wei, Qiulong, Yan, Mengyu, Mai, Liqiang. Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe3O4/Graphene Nanowires as a High-Rate Lithium Storage Anode. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.11, 6250-6256.

  27. Stephenson, Tyler, Li, Zhi, Olsen, Brian, Mitlin, David. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy & environmental science, vol.7, no.1, 209-231.

  28. Gao, Min-Rui, Xu, Yun-Fei, Jiang, Jun, Yu, Shu-Hong. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society reviews, vol.42, no.7, 2986-3017.

  29. Adv. Mater. Huang X. 2485 26 2014 

  30. Chang, Kun, Geng, Dongsheng, Li, Xifei, Yang, Jinli, Tang, Yongji, Cai, Mei, Li, Ruying, Sun, Xueliang. Ultrathin MoS2/Nitrogen‐Doped Graphene Nanosheets with Highly Reversible Lithium Storage. Advanced energy materials, vol.3, no.7, 839-844.

  31. Zhu, Changbao, Mu, Xiaoke, van Aken, Peter A., Yu, Yan, Maier, Joachim. Single‐Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. Angewandte Chemie. international edition, vol.53, no.8, 2152-2156.

  32. Zhu, Changbao, Mu, Xiaoke, van Aken, Peter A., Yu, Yan, Maier, Joachim. Single‐Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. Angewandte Chemie, vol.126, no.8, 2184-2188.

  33. Zhou, Xiaosi, Wan, Li-Jun, Guo, Yu-Guo. Synthesis of MoS2 nanosheet–graphene nanosheet hybrid materials for stable lithium storage. Chemical communications : Chem comm, vol.49, no.18, 1838-1840.

  34. Wang, Zhen, Chen, Tao, Chen, Weixiang, Chang, Kun, Ma, Lin, Huang, Guochuang, Chen, Dongyun, Lee, Jim Yang. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.1, no.6, 2202-2210.

  35. Zhou, Xiaosi, Wan, Li-Jun, Guo, Yu-Guo. Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale, vol.4, no.19, 5868-.

  36. Jing, Y., Ortiz-Quiles, E.O., Cabrera, C.R., Chen, Z., Zhou, Z.. Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries. Electrochimica acta, vol.147, 392-400.

  37. Zhang, Kan, Kim, Hwan‐Jin, Lee, Jeong‐Taik, Chang, Gee‐Woo, Shi, Xinjian, Kim, Wanjung, Ma, Ming, Kong, Ki‐jeong, Choi, Jae‐Man, Song, Min‐Sang, Park, Jong Hyeok. Unconventional Pore and Defect Generation in Molybdenum Disulfide: Application in High‐Rate Lithium‐Ion Batteries and the Hydrogen Evolution Reaction. ChemSusChem, vol.7, no.9, 2489-2495.

  38. Zhang, Lei, Lou, Xiong Wen (David). Hierarchical MoS2 Shells Supported on Carbon Spheres for Highly Reversible Lithium Storage. Chemistry : a European journal, vol.20, no.18, 5219-5223.

  39. Liu, Hao, Su, Dawei, Zhou, Ruifeng, Sun, Bing, Wang, Guoxiu, Qiao, Shi Zhang. Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage. Advanced energy materials, vol.2, no.8, 970-975.

  40. Hwang, Haesuk, Kim, Hyejung, Cho, Jaephil. MoS2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.11, 4826-4830.

  41. David, Lamuel, Bhandavat, Romil, Singh, Gurpreet. MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes. ACS nano, vol.8, no.2, 1759-1770.

  42. Wang, Yun‐Xiao, Chou, Shu‐Lei, Wexler, David, Liu, Hua‐Kun, Dou, Shi‐Xue. High‐Performance Sodium‐Ion Batteries and Sodium‐Ion Pseudocapacitors Based on MoS2/Graphene Composites. Chemistry : a European journal, vol.20, no.31, 9607-9612.

  43. Wang, Jingjing, Luo, Chao, Gao, Tao, Langrock, Alex, Mignerey, Alice C., Wang, Chunsheng. An Advanced MoS2/Carbon Anode for High‐Performance Sodium‐Ion Batteries. Small, vol.11, no.4, 473-481.

  44. Hu, Zhe, Wang, Lixiu, Zhang, Kai, Wang, Jianbin, Cheng, Fangyi, Tao, Zhanliang, Chen, Jun. MoS2 Nanoflowers with Expanded Interlayers as High‐Performance Anodes for Sodium‐Ion Batteries. Angewandte Chemie. international edition, vol.53, no.47, 12794-12798.

  45. Hu, Zhe, Wang, Lixiu, Zhang, Kai, Wang, Jianbin, Cheng, Fangyi, Tao, Zhanliang, Chen, Jun. MoS2 Nanoflowers with Expanded Interlayers as High‐Performance Anodes for Sodium‐Ion Batteries. Angewandte Chemie, vol.126, no.47, 13008-13012.

  46. Ko, You Na, Park, Seung Bin, Jung, Kyeong Youl, Kang, Yun Chan. One-Pot Facile Synthesis of Ant-Cave-Structured Metal Oxide–Carbon Microballs by Continuous Process for Use as Anode Materials in Li-Ion Batteries. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.11, 5462-5466.

  47. Choi, Seung Ho, Ko, You Na, Jung, Kyeong Youl, Kang, Yun Chan. Macroporous Fe3O4/Carbon Composite Microspheres with a Short Li+ Diffusion Pathway for the Fast Charge/Discharge of Lithium Ion Batteries. Chemistry : a European journal, vol.20, no.35, 11078-11083.

  48. Jung, D.S., Ko, Y.N., Kang, Y.C., Park, S.B.. Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries. Advanced powder technology : the international journal of the Society of Powder Technology, Japan, vol.25, no.1, 18-31.

  49. Adv. Energy Mater. Zhang N. 1401123 2014 

  50. Yang, Z., Guo, J., Xu, S., Yu, Y., Abruna, H.D., Archer, L.A.. Interdispersed silicon-carbon nanocomposites and their application as anode materials for lithium-ion batteries. Electrochemistry communications, vol.28, 40-43.

  51. Mao, Shun, Wen, Zhenhai, Kim, Haejune, Lu, Ganhua, Hurley, Patrick, Chen, Junhong. A General Approach to One-Pot Fabrication of Crumpled Graphene-Based Nanohybrids for Energy Applications. ACS nano, vol.6, no.8, 7505-7513.

  52. He, Liang, Toda, Masaya, Kawai, Yusuke, Miyashita, Hidetoshi, Omori, Mamoru, Hashida, Toshiyuki, Berger, Rüdiger, Ono, Takahito. Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsystem technologies : sensors, actuators, systems integration, vol.20, no.2, 201-208.

  53. Xin, Sen, Yin, Ya‐Xia, Wan, Li‐Jun, Guo, Yu‐Guo. Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li‐S Batteries with Long Lifespan. Particle & particle systems characterization : measurement and description of particle properties and behavior in powders and other disperse systems, vol.30, no.4, 321-325.

  54. Wang, Q., Li, J.. Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.111, no.4, 1675-1682.

  55. Liu, Keng-Ku, Zhang, Wenjing, Lee, Yi-Hsien, Lin, Yu-Chuan, Chang, Mu-Tung, Su, Ching-Yuan, Chang, Chia-Seng, Li, Hai, Shi, Yumeng, Zhang, Hua, Lai, Chao-Sung, Li, Lain-Jong. Growth of Large-Area andHighly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.12, no.3, 1538-1544.

  56. Beidaghi, Majid, Wang, Chunlei. Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance. Advanced functional materials, vol.22, no.21, 4501-4510.

  57. Xiao, Jie, Wang, Xiaojian, Yang, Xiao‐Qing, Xun, Shidi, Liu, Gao, Koech, Phillip K., Liu, Jun, Lemmon, John P.. Electrochemically Induced High Capacity Displacement Reaction of PEO/MoS2/Graphene Nanocomposites with Lithium. Advanced functional materials, vol.21, no.15, 2840-2846.

  58. Fang, X., Yu, X., Liao, S., Shi, Y., Hu, Y.S., Wang, Z., Stucky, G.D., Chen, L.. Lithium storage performance in ordered mesoporous MoS2 electrode material. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.151, 418-423.

  59. Huang, Guochuang, Chen, Tao, Chen, Weixiang, Wang, Zhen, Chang, Kun, Ma, Lin, Huang, Feihe, Chen, Dongyun, Lee, Jim Yang. Graphene‐Like MoS2/Graphene Composites: Cationic Surfactant‐Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small, vol.9, no.21, 3693-3703.

  60. Hu, Yan-Yan, Liu, Zigeng, Nam, Kyung-Wan, Borkiewicz, Olaf J., Cheng, Jun, Hua, Xiao, Dunstan, Matthew T., Yu, Xiqian, Wiaderek, Kamila M., Du, Lin-Shu, Chapman, Karena W., Chupas, Peter J., Yang, Xiao-Qing, Grey, Clare P.. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nature materials, vol.12, no.12, 1130-1136.

  61. Shi, Yumeng, Wang, Ye, Wong, Jen It, Tan, Alex Yuan Sheng, Hsu, Chang-Lung, Li, Lain-Jong, Lu, Yi-Chun, Yang, Hui Ying. Self-assembly of hierarchical MoS x /CNT nanocomposites (2 <3): towards high performance anode materials for lithium ion batteries . Scientific reports, vol.3, 2169-.

  62. Feng, C., Ma, J., Li, H., Zeng, R., Guo, Z., Liu, H.. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Materials research bulletin, vol.44, no.9, 1811-1815.

  63. Ryu, Won-Hee, Jung, Ji-Won, Park, Kyusung, Kim, Sang-Joon, Kim, Il-Doo. Vine-like MoS2anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale, vol.6, no.19, 10975-10981.

  64. Wang, Xuefeng, Shen, Xi, Wang, Zhaoxiang, Yu, Richeng, Chen, Liquan. Atomic-Scale Clarification of Structural Transition of MoS2 upon Sodium Intercalation. ACS nano, vol.8, no.11, 11394-11400.

  65. Ji, Liwen, Gu, Meng, Shao, Yuyan, Li, Xiaolin, Engelhard, Mark H., Arey, Bruce W., Wang, Wei, Nie, Zimin, Xiao, Jie, Wang, Chongmin, Zhang, Ji‐Guang, Liu, Jun. Controlling SEI Formation on SnSb‐Porous Carbon Nanofibers for Improved Na Ion Storage. Advanced materials, vol.26, no.18, 2901-2908.

  66. An, Qinyou, Zhang, Pengfei, Xiong, Fangyu, Wei, Qiulong, Sheng, Jinzhi, Wang, Qinqin, Mai, Liqiang. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano research, vol.8, no.2, 481-490.

  67. Ruffo, R., Fathi, R., Kim, D.J., Jung, Y.H., Mari, C.M., Kim, D.K.. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochimica acta, vol.108, 575-582.

  68. Choi, Seung Ho, Kang, Yun Chan. Uniform Decoration of Vanadium Oxide Nanocrystals on Reduced Graphene‐Oxide Balls by an Aerosol Process for Lithium‐Ion Battery Cathode Material. Chemistry : a European journal, vol.20, no.21, 6294-6299.

  69. Shi, Yi, Wang, Jia-Zhao, Chou, Shu-Lei, Wexler, David, Li, Hui-Jun, Ozawa, Kiyoshi, Liu, Hua-Kun, Wu, Yu-Ping. Hollow Structured Li3VO4 Wrapped with Graphene Nanosheets in Situ Prepared by a One-Pot Template-Free Method as an Anode for Lithium-Ion Batteries. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.10, 4715-4720.

  70. Xin, Sen, Guo, Yu-Guo, Wan, Li-Jun. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Accounts of chemical research, vol.45, no.10, 1759-1769.

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로