$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa 원문보기

PloS one, v.10 no.6, 2015년, pp.e0130451 -   

Dong, Xiangshu (Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea) ,  Yi, Hankuil (Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea) ,  Lee, Jeongyeo (Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea) ,  Nou, Ill-Sup (Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea) ,  Han, Ching-Tack (Department of Life Science, Sogang University, Seoul, Republic of Korea) ,  Hur, Yoonkang (Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-...

참고문헌 (95)

  1. 1 Mittler R ( 2006 ) Abiotic stress, the field environment and stress combination . Trends Plant Sci 11 : 15 – 19 . 16359910 

  2. 2 Mittler R , Blumwald E ( 2010 ) Genetic engineering for modern agriculture: challenges and perspectives . Annu Rev Plant Biol 61 : 443 – 462 . 10.1146/annurev-arplant-042809-112116 20192746 

  3. 3 Hasanuzzaman M , Nahar K , Alam MM , Roychowdhury R , Fujita M ( 2013 ) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants . Int J Mol Sci 14 : 9643 – 9684 . 10.3390/ijms14059643 23644891 

  4. 4 Bita CE , Gerats T ( 2013 ) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops . Front Plant Sci 4 : 273 10.3389/fpls.2013.00273 23914193 

  5. 5 Hua J ( 2009 ) From freezing to scorching, transcriptional responses to temperature variations in plants . Curr Opin Plant Biol 12 : 568 – 573 . 10.1016/j.pbi.2009.07.012 19716335 

  6. 6 Saidi Y , Finka A , Goloubinoff P ( 2011 ) Heat perception and signalling in plants: a tortuous path to thermotolerance . New Phytol 190 : 556 – 565 . 10.1111/j.1469-8137.2010.03571.x 21138439 

  7. 7 Mittler R , Finka A , Goloubinoff P ( 2012 ) How do plants feel the heat? Trends Biochem Sci 37 : 118 – 125 . 10.1016/j.tibs.2011.11.007 22236506 

  8. 8 Hu W , Hu G , Han B ( 2009 ) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice . Plant Sci 176 : 583 – 590 . 26493149 

  9. 9 Bokszczanin KL , Solanaceae Pollen Thermotolerance Initial Training Network C , Fragkostefanakis S ( 2013 ) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance . Front Plant Sci 4 : 315 10.3389/fpls.2013.00315 23986766 

  10. 10 Baniwal SK , Bharti K , Chan KY , Fauth M , Ganguli A , Kotak S , et al ( 2004 ) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors . J Biosci 29 : 471 – 487 . 15625403 

  11. 11 Scharf KD , Berberich T , Ebersberger I , Nover L ( 2012 ) The plant heat stress transcription factor (Hsf) family: structure, function and evolution . Biochim Biophys Acta 1819 : 104 – 119 . 10.1016/j.bbagrm.2011.10.002 22033015 

  12. 12 Liu HC , Liao HT , Charng YY ( 2011 ) The role of class A1 heat shock factors ( HSFA1s ) in response to heat and other stresses in Arabidopsis . Plant Cell Environ 34 : 738 – 751 . 10.1111/j.1365-3040.2011.02278.x 21241330 

  13. 13 Fragkostefanakis S , Roth S , Schleiff E , Scharf KD ( 2014 ) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks . Plant Cell Environ 7 3 10.1111/pce.12396 . [Epub ahead of print]. 

  14. 14 Kotak S , Larkindale J , Lee U , von Koskull-Doring P , Vierling E , Scharf KD . ( 2007 ) Complexity of the heat stress response in plants . Curr Opin Plant Biol 10 : 310 – 316 . 17482504 

  15. 15 Miller G , Mittler R ( 2006 ) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98 : 279 – 288 . 16740587 

  16. 16 Baniwal SK , Chan KY , Scharf KD , Nover L ( 2007 ) Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4 . J Biol Chem 282 : 3605 – 3613 . 17150959 

  17. 17 Vierling E ( 1991 ) The Roles of Heat Shock Proteins in Plants . Plant Mol Biol 42 : 579 – 620 . 

  18. 18 Wang W , Vinocur B , Shoseyov O , Altman A ( 2004 ) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response . Trends Plant Sci 9 : 244 – 252 . 15130550 

  19. 19 Qu AL , Ding YF , Jiang Q , Zhu C ( 2013 ) Molecular mechanisms of the plant heat stress response . Biochem Biophys Res Commun 432 : 203 – 207 . 10.1016/j.bbrc.2013.01.104 23395681 

  20. 20 Larkindale J , Vierling E ( 2008 ) Core genome responses involved in acclimation to high temperature . Plant Physiol 146 : 748 – 761 . 18055584 

  21. 21 Lee J , Song H , Han C-T , Lim Y , Chung S-M , Hur Y ( 2010 ) Expression characteristics of heat shock protein genes in two comparable inbred lines of Chinese cabbage, Chiifu and Kenshin . Genes Genom 32 : 247 – 257 . 

  22. 22 Hossain MM , Inden H , Asahira T ( 1989 ) Interspecific hybrids between Brassica campestris L. and B. oleracea L. through embryo and ovary culture. Mem Coll Agric , Kyoto Univ 135 : 21 – 30 . 

  23. 23 Yamagishi H , Hossain MM , Yonezawa K ( 1994 ) Morphology, fertility and cross-compatibility of somatic hybrids between Brassica oleracea L. and B . campestris L . Sci Hort 58 : 283 – 288 . 

  24. 24 Lee SC , Lim MH , Kim JA , Lee SI , Kim JS , Jin M , et al ( 2008 ) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray . Mol Cells 26 : 595 – 605 . 18797175 

  25. 25 Lee SC , Lim MH , Yu JG , Park BS , Yang TJ ( 2012 ) Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa . Plant Physiol Biochem 61 : 142 – 152 . 10.1016/j.plaphy.2012.09.016 23148914 

  26. 26 Song X , Li Y , Hou X ( 2013 ) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage ( Brassica rapa ssp. pekinensis ) . BMC Genomics 14 : 573 10.1186/1471-2164-14-573 23972083 

  27. 27 Hwang I , Jung HJ , Park JI , Yang TJ , Nou IS ( 2014 ) Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response . Genomics 104 : 194 – 202 . 10.1016/j.ygeno.2014.07.008 25075938 

  28. 28 Jung HJ , Dong X , Park JI , Thamilarasan SK , Lee SS , Kim YK , et al ( 2014 ) Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br135K oligomeric chip . PLoS One 9 : e106069 10.1371/journal.pone.0106069 25167163 

  29. 29 Kayum MA , Jung HJ , Park JI , Ahmed NU , Saha G , Yang TJ , et al ( 2015 ) Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa . Mol Genet Genomics 290 : 79 – 95 . 10.1007/s00438-014-0898-1 25149146 

  30. 30 Song XM , Huang ZN , Duan WK , Ren J , Liu TK , Li Y , et al ( 2014 ) Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage ( Brassica rapa ssp. pekinensis ) . Mol Genet Genomics 289 : 77 – 91 . 10.1007/s00438-013-0791-3 24241166 

  31. 31 Lee J , Lim Y-P , Han C-T , Nou I-S , Hur Y ( 2013 ) Genome-wide expression profiles of contrasting inbred lines of Chinese cabbage, Chiifu and Kenshin, under temperature stress . Genes Genom . 2013; 35 ( 3 ): 273 – 88 . 

  32. 32 Rapacz M ( 2002 ) Cold-deacclimation of oilseed rape ( Brassica napus var. oleifera ) in response to fluctuating temperatures and photoperiod . Ann Bot 89 : 543 – 549 . 12099527 

  33. 33 Song L , Ding W , Zhao M , Sun B , Zhang L ( 2006 ) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed . Plant Sci 171 : 449 – 458 . 10.1016/j.plantsci.2006.05.002 25193642 

  34. 34 Ashburner M , Ball CA , Blake JA , Botstein D , Butler H , Cherry JM , et al ( 2000 ) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium . Nat Genet 25 : 25 – 29 . 10802651 

  35. 35 Du Z , Zhou X , Ling Y , Zhang Z , Su Z ( 2010 ) agriGO: a GO analysis toolkit for the agricultural community . Nucleic Acids Res 38 : W64 – 70 . 10.1093/nar/gkq310 20435677 

  36. 36 Kanehisa M , Araki M , Goto S , Hattori M , Hirakawa M , Itoh M , et al ( 2008 ) KEGG for linking genomes to life and the environment . Nucleic Acids Res 36 : D480 – 484 . 18077471 

  37. 37 Ernst J , Bar-Joseph Z ( 2006 ) STEM: a tool for the analysis of short time series gene expression data . BMC Bioinformatics 7 : 191 16597342 

  38. 38 Higo K , Ugawa Y , Iwamoto M , Korenaga T ( 1999 ) Plant cis -acting regulatory DNA elements (PLACE) database: 1999 . Nucleic Acids Res 27 : 297 – 300 . 9847208 

  39. 39 Ma S , Bohnert HJ ( 2007 ) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression . Genome Biol 8 : R49 17408486 

  40. 40 Wilson RA , Sangha MK , Banga SS , Atwal AK , Gupta S ( 2014 ) Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea . J Environ Biol 35 : 383 – 387 . 24665766 

  41. 41 Yeh CH , Kaplinsky NJ , Hu C , Charng YY ( 2012 ) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity . Plant Sci 195 : 10 – 23 . 10.1016/j.plantsci.2012.06.004 22920995 

  42. 42 Rizhsky L , Liang H , Shuman J , Shulaev V , Davletova S , Mittler R ( 2004 ) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress . Plant Physiol 134 : 1683 – 1696 . 15047901 

  43. 43 Rensink WA , Iobst S , Hart A , Stegalkina S , Liu J , Buell CR ( 2005 ) Gene expression profiling of potato responses to cold, heat, and salt stress . Funct Integr Genomics 5 : 201 – 207 . 15856349 

  44. 44 Lim CJ , Yang KA , Hong JK , Choi JS , Yun DJ , Hong JC , et al ( 2006 ) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells . J Plant Res 119 : 373 – 383 . 16807682 

  45. 45 Frank G , Pressman E , Ophir R , Althan L , Shaked R , Freedman M , et al ( 2009 ) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response . J Exp Bot 60 : 3891 – 3908 . 10.1093/jxb/erp234 19628571 

  46. 46 Bita CE , Zenoni S , Vriezen WH , Mariani C , Pezzotti M , Gerats T ( 2011 ) Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants . BMC Genomics 12 : 384 10.1186/1471-2164-12-384 21801454 

  47. 47 Gilroy S , Suzuki N , Miller G , Choi WG , Toyota M , Devireddy AR , et al ( 2014 ) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling . Trends Plant Sci 19 : 623 – 630 . 10.1016/j.tplants.2014.06.013 25088679 

  48. 48 Nover L , Bharti K , Doring P , Mishra SK , Ganguli A , Scharf KD ( 2001 ) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6 : 177 – 189 . 11599559 

  49. 49 Mishra SK , Tripp J , Winkelhaus S , Tschiersch B , Theres K , Nover L , et al ( 2002 ) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato . Genes Dev 16 : 1555 – 1567 . 12080093 

  50. 50 Volkov RA , Panchuk II , Mullineaux PM , Schoffl F ( 2006 ) Heat stress-induced H(2)O (2) is required for effective expression of heat shock genes in Arabidopsis . Plant Mol Biol 61 : 733 – 746 . 16897488 

  51. 51 Charng YY , Liu HC , Liu NY , Chi WT , Wang CN , Chang SH , et al ( 2007 ) A heat-inducible transcription factor, HsfA2 , is required for extension of acquired thermotolerance in Arabidopsis . Plant Physiol 143 : 251 – 262 . 17085506 

  52. 52 Wang Z , Wang F , Tang J , Huang Z , Xiong A , Hou X ( 2014 ) C-repeat binding factor gene family identified in non-heading Chinese cabbage is functional in abiotic and biotic stress response but different from that in Arabidopsis . Acta Physiol Plant 36 : 3217 – 3229 . 

  53. 53 Charng YY , Liu HC , Liu NY , Hsu FC , Ko SS ( 2006 ) Arabidopsis Hsa32 , a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation . Plant Physiol 140 : 1297 – 1305 . 16500991 

  54. 54 Lin MY , Chai KH , Ko SS , Kuang LY , Lur HS , Charng YY ( 2014 ) A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties . Plant Physiol 164 : 2045 – 2053 . 10.1104/pp.113.229609 24520156 

  55. 55 Jia L , Chu H , Wu D , Feng M , Zhao L ( 2014 ) Role of calmodulin in thermotolerance . Plant Signal Behav 9 . 

  56. 56 Sgobba A , Paradiso A , Dipierro S , De Gara L , de Pinto MC ( 2015 ) Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress . Physiol Plant 153 : 68 – 78 . 10.1111/ppl.12220 24796393 

  57. 57 Wang L , Guo Y , Jia L , Chu H , Zhou S , Chen K , et al ( 2014 ) Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings . Plant Physiol 164 : 2184 – 2196 . 10.1104/pp.113.229369 24510762 

  58. 58 Davletova S , Rizhsky L , Liang H , Shengqiang Z , Oliver DJ , Coutu J , et al ( 2005 ) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis . Plant Cell 17 : 268 – 281 . 15608336 

  59. 59 Koussevitzky S , Suzuki N , Huntington S , Armijo L , Sha W , Cortes D , et al ( 2008 ) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination . J Biol Chem 283 : 34197 – 34203 . 10.1074/jbc.M806337200 18852264 

  60. 60 Myouga F , Hosoda C , Umezawa T , Iizumi H , Kuromori T , Motohashi R , et al ( 2008 ) A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis . Plant Cell 20 : 3148 – 3162 . 10.1105/tpc.108.061341 18996978 

  61. 61 Xu XM , Lin H , Maple J , Bjorkblom B , Alves G , Larsen JP , et al ( 2010 ) The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation . J Cell Sci 123 : 1644 – 1651 . 10.1242/jcs.063222 20406884 

  62. 62 Al-Quraan NA , Locy RD , Singh NK ( 2010 ) Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress . Plant Physiol Biochem 48 : 697 – 702 . 10.1016/j.plaphy.2010.04.011 20554213 

  63. 63 Kugler A , Kohler B , Palme K , Wolff P , Dietrich P ( 2009 ) Salt-dependent regulation of a CNG channel subfamily in Arabidopsis . BMC Plant Biol 9 : 140 10.1186/1471-2229-9-140 19943938 

  64. 64 von Koskull-Doring P , Scharf KD , Nover L ( 2007 ) The diversity of plant heat stress transcription factors . Trends Plant Sci 12 : 452 – 457 . 17826296 

  65. 65 Li S , Zhou X , Chen L , Huang W , Yu D ( 2010 ) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress . Mol Cells 29 : 475 – 483 . 10.1007/s10059-010-0059-2 20396965 

  66. 66 Srivastava R , Deng Y , Howell SH ( 2014 ) Stress sensing in plants by an ER stress sensor/transducer, bZIP28 . Front Plant Sci 5 : 59 10.3389/fpls.2014.00059 24616727 

  67. 67 Jiang Y , Yang B , Deyholos MK ( 2009 ) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress . Mol Genet Genomics 282 : 503 – 516 . 10.1007/s00438-009-0481-3 19760256 

  68. 68 Sakuma Y , Maruyama K , Osakabe Y , Qin F , Seki M , Shinozaki K , et al ( 2006 ) Functional analysis of an Arabidopsis transcription factor, DREB2A , involved in drought-responsive gene expression . Plant Cell 18 : 1292 – 1309 . 16617101 

  69. 69 Sakuma Y , Maruyama K , Qin F , Osakabe Y , Shinozaki K , Yamaguchi-Shinozaki K ( 2006 ) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression . Proc Natl Acad Sci U S A 103 : 18822 – 18827 . 17030801 

  70. 70 Schramm F , Larkindale J , Kiehlmann E , Ganguli A , Englich G , Vierling E , et al ( 2008 ) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis . Plant J 53 : 264 – 274 . 17999647 

  71. 71 Seo PJ , Kim MJ , Song JS , Kim YS , Kim HJ , Park CM ( 2010 ) Proteolytic processing of an Arabidopsis membrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity . Biochem J 427 : 359 – 367 . 10.1042/BJ20091762 20156199 

  72. 72 Seo PJ , Park CM ( 2010 ) A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals . Plant Signal Behav 5 : 481 – 483 . 10.4161/psb.11083 20139739 

  73. 73 Kosma DK , Murmu J , Razeq FM , Santos P , Bourgault R , Molina I , et al ( 2014 ) AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types . Plant J 80 : 216 – 229 . 10.1111/tpj.12624 25060192 

  74. 74 Van Oosten MJ , Sharkhuu A , Batelli G , Bressan RA , Maggio A ( 2013 ) The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress . Plant Mol Biol 83 : 405 – 415 . 10.1007/s11103-013-0099-z 23925404 

  75. 75 Gill SS , Tuteja N ( 2010 ) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants . Plant Physiol Biochem 48 : 909 – 930 . 10.1016/j.plaphy.2010.08.016 20870416 

  76. 76 Morito D , Nagata K ( 2012 ) ER Stress Proteins in Autoimmune and Inflammatory Diseases . Front Immunol 3 : 48 10.3389/fimmu.2012.00048 22566930 

  77. 77 Ciftci-Yilmaz S , Morsy MR , Song L , Coutu A , Krizek BA , Lewis MW , et al ( 2007 ) The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress . J Biol Chem 282 : 9260 – 9268 . 17259181 

  78. 78 Davletova S , Schlauch K , Coutu J , Mittler R ( 2005 ) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis . Plant Physiol 139 : 847 – 856 . 16183833 

  79. 79 Umezawa T , Okamoto M , Kushiro T , Nambara E , Oono Y , Seki M , et al ( 2006 ) CYP707A3 , a major ABA 8'-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana . Plant J 46 : 171 – 182 . 16623881 

  80. 80 Zheng Y , Huang Y , Xian W , Wang J , Liao H ( 2012 ) Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses . Ann Bot 110 : 743 – 756 . 10.1093/aob/mcs133 22751653 

  81. 81 Okamoto M , Tanaka Y , Abrams SR , Kamiya Y , Seki M , Nambara E ( 2009 ) High humidity induces abscisic acid 8'-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis . Plant Physiol 149 : 825 – 834 . 10.1104/pp.108.130823 19036833 

  82. 82 Khalturin K , Hemmrich G , Fraune S , Augustin R , Bosch TC ( 2009 ) More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet 25 : 404 – 413 . 10.1016/j.tig.2009.07.006 19716618 

  83. 83 Luhua S , Hegie A , Suzuki N , Shulaev E , Luo X , Cenariu D , et al ( 2013 ) Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening . Physiol Plant 148 : 322 – 333 . 10.1111/ppl.12013 23517122 

  84. 84 Gollery M , Harper J , Cushman J , Mittler T , Mittler R ( 2007 ) POFs: what we don't know can hurt us . Trends Plant Sci 12 : 492 – 496 . 17928258 

  85. 85 Luhua S , Ciftci-Yilmaz S , Harper J , Cushman J , Mittler R ( 2008 ) Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function . Plant Physiol 148 : 280 – 292 . 10.1104/pp.108.124875 18614705 

  86. 86 Rieping M , Schoffl F ( 1992 ) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco . Mol Gen Genet 231 : 226 – 232 . 1736093 

  87. 87 Haralampidis K , Milioni D , Rigas S , Hatzopoulos P ( 2002 ) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene . Plant Physiol 129 : 1138 – 1149 . 12114568 

  88. 88 Kaplan B , Davydov O , Knight H , Galon Y , Knight MR , Fluhr R , et al ( 2006 ) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis . Plant Cell 18 : 2733 – 2748 . 16980540 

  89. 89 Hobo T , Kowyama Y , Hattori T ( 1999 ) A bZIP factor, TRAB1 , interacts with VP1 and mediates abscisic acid-induced transcription . Proc Natl Acad Sci U S A 96 : 15348 – 15353 . 10611387 

  90. 90 Narusaka Y , Nakashima K , Shinwari ZK , Sakuma Y , Furihata T , Abe H , et al ( 2003 ) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses . Plant J 34 : 137 – 148 . 12694590 

  91. 91 Kim S , Kang JY , Cho DI , Park JH , Kim SY ( 2004 ) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance . Plant J 40 : 75 – 87 . 15361142 

  92. 92 Nakashima K , Fujita Y , Katsura K , Maruyama K , Narusaka Y , Seki M , et al ( 2006 ) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis . Plant Mol Biol 60 : 51 – 68 . 16463099 

  93. 93 Lindlof A , Brautigam M , Chawade A , Olsson O , Olsson B ( 2009 ) In silico analysis of promoter regions from cold-induced genes in rice ( Oryza sativa L.) and Arabidopsis thaliana reveals the importance of combinatorial control . Bioinformatics 25 : 1345 – 1348 . 10.1093/bioinformatics/btp172 19321735 

  94. 94 Suzuki M , Ketterling MG , McCarty DR ( 2005 ) Quantitative statistical analysis of cis -regulatory sequences in ABA/VP1 - and CBF/DREB1 -regulated genes of Arabidopsis . Plant Physiol 139 : 437 – 447 . 16113229 

  95. 95 Ma S , Shah S , Bohnert HJ , Snyder M , Dinesh-Kumar SP ( 2013 ) Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways . PLoS Genet 9 : e1003840 10.1371/journal.pgen.1003840 24098147 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로