$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review

Renewable & sustainable energy reviews, v.59, 2016년, pp.620 - 635  

Hanaei, Hengameh (Mechanical Engineering Department, UniversityTeknologi PETRONAS (UTP), Darul Ridzuan, Bandar seri iskandar, 32610 Perak, Malaysia) ,  Assadi, M. Khalaji (Mechanical Engineering Department, UniversityTeknologi PETRONAS (UTP), Darul Ridzuan, Bandar seri iskandar, 32610 Perak, Malaysia) ,  Saidur, R. (Centre of Research Excellence in Renewable Energy (CoRE-RE), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

Abstract AI-Helper 아이콘AI-Helper

Abstract Due to their useful atomic structure, carbon nanotubes (CNTs) have fascinating chemical and physical properties, as exemplified by graphite and diamond. They have enabled major achievements in various fields, such as materials, electronic devices, energy storage, separations, and sensors. ...

주제어

참고문헌 (127)

  1. Nano Res Gwon 7 5 670 2014 10.1007/s12274-014-0427-x Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells 

  2. Renew Sustain Energy Rev Dincer 4 157 2000 10.1016/S1364-0321(99)00011-8 Renewable energy and sustainable development: a crucial review 

  3. Sol Energy Mater Sol Cells Ye 111 160 2013 10.1016/j.solmat.2012.12.037 Sol-gel preparation of SiO2/TiO2/SiO2-TiO2 broadband antireflective coating for solar cell cover glass 

  4. Energy Environ Sci Raut 4 10 3779 2011 10.1039/c1ee01297e Anti-reflective coatings: a critical, in-depth review 

  5. Sol Energy Mater Sol Cells Zhu 93 9 1461 2009 10.1016/j.solmat.2009.04.006 Applications of carbon materials in photovoltaic solar cells 

  6. Sci Rep Shi 2 884 2012 10.1038/srep00884 TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15% 

  7. Nat Chem Mathew 6 3 242 2014 10.1038/nchem.1861 Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers 

  8. Mater Sci Forum Benzekkour 609 139 2009 10.4028/www.scientific.net/MSF.609.139 Formation of rough TiO2 thin films on glass and porous silicon by sol-gel method 

  9. Chem Mater Faustini 22 15 4406 2010 10.1021/cm100937e Hydrophobic, antireflective, self-cleaning, and antifogging sol−gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells 

  10. Nano Lett Garnett 10 3 1082 2010 10.1021/nl100161z Light trapping in silicon nanowire solar cells 

  11. Langmuir Zhang 25 8 4792 2009 10.1021/la8040264 Single-walled carbon nanotube pillars: a superhydrophobic surface 

  12. Nano lett Park 12 1 133 2011 10.1021/nl2029859 Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes 

  13. Nano lett Park 13 1 233 2012 10.1021/nl303920b Graphene cathode-based ZnO nanowire hybrid solar cells 

  14. Nano Lett Shi 13 4 1776 2013 10.1021/nl400353f Colloidal antireflection coating improves graphene-silicon solar cells 

  15. Nano Lett Miao 12 6 2745 2012 10.1021/nl204414u High efficiency graphene solar cells by chemical doping 

  16. J Mater Chem A Huang 2015 Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing 

  17. Current Appl Phys Ikram 15 48 2015 10.1016/j.cap.2014.10.026 Influence of fullerene derivative replacement with TiO2 nanoparticles in organic bulk heterojunction solar cells 

  18. Chem Mater Chang 27 1869 2015 10.1021/acs.chemmater.5b00161 High-performance flexible tandem polymer solar cell employing a novel cross-linked conductive fullerene as an electron transport layer 

  19. Nanoscale Kong 6 3296 2014 10.1039/c3nr05705d Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells 

  20. Sol Energy Mater Sol Cells Chen 137 185 2015 10.1016/j.solmat.2015.02.002 The effect of the native silicon dioxide interfacial layer on photovoltaic characteristics of gold/p-type amorphous boron carbon thin film alloy/silicon dioxide/n-type silicon/aluminum solar cells 

  21. Appl Surf Sci Lan 316 398 2014 10.1016/j.apsusc.2014.07.125 Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers 

  22. Mater Res Bull Li 48 7 2522 2013 10.1016/j.materresbull.2013.03.017 Broadband anti-reflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cells 

  23. Nanotechnol Sect Sol Energy Energy Storage Ralph Seitz 2012 

  24. Powder Technol Wei 183 1 10 2008 10.1016/j.powtec.2007.11.025 The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space - time analysis 

  25. Casp J Appl Sci Hanaei 2 3 46 2013 Optimization of carbon nano tubes synthesis using fluidized bed chemical vapor deposition: a statistical approach 

  26. Applied Physics Dresselhaus 80 11 2001 10.1007/3-540-39947-X_2 Relation of carbon nanotubes to other carbon materials 

  27. Electrochem Soc Interface Kamat 2006 10.1149/2.F13061IF Carbon nanomaterials: building blocks in energy conversion devices 

  28. Toxicol Sci Donaldson 92 1 5 2006 10.1093/toxsci/kfj130 Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety 

  29. Ind Eng Chem See 46 4 2007 A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition 

  30. Ind Eng Chem See 47 7686 2008 10.1021/ie701786p Process parameter interaction effects during carbon nanotube synthesis in fluidized beds 

  31. Ind Eng Chem Son 47 2166 2008 10.1021/ie0711630 High-quality multiwalled carbon nanotubes from catalytic decomposition of carboneous materials in gas-solid fluidized beds 

  32. Mater Sci Eng: B Belin 119 2 105 2005 10.1016/j.mseb.2005.02.046 Characterization methods of carbon nanotubes: a review 

  33. Chem Eng J Danafar 155 1-2 37 2009 10.1016/j.cej.2009.07.052 Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes - a review 

  34. Chem Eng Res Des Danafar 89 2 214 2011 10.1016/j.cherd.2010.05.004 Influence of catalytic particle size on the performance of fluidized-bed chemical vapor deposition synthesis of carbon nanotubes 

  35. Collins 2000 FOR electronics 

  36. Chem Phys Lett Avouris 281 429 2002 Carbon nanotube electronics 

  37. Mater Sci Eng: R: Rep Popov 43 3 61 2004 10.1016/j.mser.2003.10.001 Carbon nanotubes: properties and application 

  38. J Phys Chem Mater Barazzouk 108 44 17015 2004 Single-wall carbon nanotube films for photocurrent generation. A prompt response to visible-light irradiation 

  39. Science Zhang 306 5700 1358 2004 10.1126/science.1104276 Multifunctional carbon nanotube yarns by downsizing an ancient technology 

  40. Nano Lett Kongkanand 7 3 676 2007 10.1021/nl0627238 Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons 

  41. J Mater Chem Mater Hou 21 36 13776 2011 10.1039/c1jm12056e Transparent conductive oxide-less, flexible, and highly efficient dye-sensitized solar cells with commercialized carbon fiber as the counter electrode 

  42. Nano Lett Chen 12 5 2568 2012 10.1021/nl300799d Intertwined aligned carbon nanotube fiber based dyesensitized solar cells 

  43. Sol Energy Mater Sol Cells Uddin 108 65 2013 10.1016/j.solmat.2012.09.003 Solid state dye-sensitized photovoltaic micro-wires (DSPMs) with carbon nanotubes yarns as counter electrode: synthesis and characterization 

  44. Int J Heat Mass Transf Mahian 57 2 582 2013 10.1016/j.ijheatmasstransfer.2012.10.037 A review of the applications of nanofluids in solar energy 

  45. Renew Sustain Energy Revs Abdin 26 837 2013 10.1016/j.rser.2013.06.023 Solar energy harvesting with the application of nanotechnology 

  46. Renew Sustain Energy Rev Javadi 28 232 2013 10.1016/j.rser.2013.06.053 Investigating performance improvement of solar collectors by using nanofluids 

  47. Chem Rev Hagfeldt 110 11 6595 2010 10.1021/cr900356p Dye-sensitized solar cells 

  48. Sol Energy Mater Sol Cells Kay 44 1 99 1996 10.1016/0927-0248(96)00063-3 Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder 

  49. Langmuir Che 15 3 750 1999 10.1021/la980663i Metalnanocluster- filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production 

  50. Nano Lett Zhang 11 8 3383 2011 10.1021/nl201790w Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes 

  51. Sol Energy Mater Sol Cells Uddin 115 166 2013 10.1016/j.solmat.2013.03.025 Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells 

  52. Sol Energy Mater Sol Cells Uddin 108 65 2013 10.1016/j.solmat.2012.09.003 Solid state dye-sensitized photovoltaic micro-wires (DSPMs) with carbon nanotubes yarns as counter electrode: synthesis and characterization 

  53. Sol Energy Yan 96 239 2013 10.1016/j.solener.2013.07.027 Carbon nanotubes (CNTs) enrich the solar cells 

  54. Sol Energy Mater Sol Cells Angmo 107 329 2012 10.1016/j.solmat.2012.07.004 All solution processing of ITOfree organic solar cell modules directly on barrier foil 

  55. Sol Energy Xia 85 12 3143 2011 10.1016/j.solener.2009.10.005 Strategy to improve the performance of dyesensitized solar cells: interface engineering principle 

  56. Coord Chem Rev Tributsch 248 13-14 1511 2004 10.1016/j.ccr.2004.05.030 Dye sensitization solar cells: a critical assessment of the learning curve 

  57. Renew Sustain Energy Rev Abdin 26 837 2013 10.1016/j.rser.2013.06.023 Solar energy harvesting with the application of nanotechnology 

  58. Adv Energy Mater Tune 2 9 1043 2012 10.1002/aenm.201200249 Carbon nanotube-silicon solar cells 

  59. Renew Sustain Energy Rev Hussein 42 460 2015 10.1016/j.rser.2014.10.027 Applications of nanotechnology in renewable energies - a comprehensive overview and understanding 

  60. Appl Surf Sci Li 276 390 2013 10.1016/j.apsusc.2013.03.103 Spray deposition of electrospun TiO2 nanoparticles with self-cleaning and transparent properties onto glass 

  61. J Mater Chem A Cui 2 29 11311 2014 10.1039/C4TA01353K Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films 

  62. Renew Energy Verma 36 9 2489 2011 10.1016/j.renene.2011.02.017 Self-cleaning and antireflective packaging glass for solar modules 

  63. Adv Funct Mater Wan 20 18 3064 2010 10.1002/adfm.201000678 Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells 

  64. Adv Funct Mater Zhang 20 20 3411 2010 10.1002/adfm.201000795 Patterning colloidal crystals and nanostructure arrays by soft lithography 

  65. 10.1145/1811212.1811220 Chattopadhyay Sudipta, Roychoudhury A, Mitra Tulika. Modeling shared cache and bus in multi-cores for timing analysis. In: Proceedings of the 13th international workshop on software and compilers for embedded systems; 2010. 

  66. J Colloid Interface Sci Xiong 350 1 344 2010 10.1016/j.jcis.2010.06.053 Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties 

  67. Opt Express Hu 18 6 2010 Large area, freestanding GaN nanocolumn membrane with bottom subwavelength nanostructure 

  68. Sol Energy Mater Sol Cells Liu 92 11 1434 2008 10.1016/j.solmat.2008.06.005 Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties 

  69. Chem Commun Zhu 2753 2006 10.1039/b603634a UV-Manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film 

  70. J Mater Chem Li 19 44 8366 2009 10.1039/b914462e Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity 

  71. Langmuir Nakata 27 7 3275 2011 10.1021/la200438p Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles 

  72. Nano Lett Lee 8 5 1501 2008 10.1021/nl080659j ZnO Nanostructures as efficient antireflection layers in solar cells 

  73. J Phys Chem Liu 113 148 2009 Superhydrophilic and antireflective properties of silica nanoparticle coatings fabricated via layer-by-layer assembly and postcalcination 

  74. Nanoscale Wei 3 4 1845 2011 10.1039/c0nr00986e Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices 

  75. Sol Energy Mater Sol Cells Tune 94 10 1665 2010 10.1016/j.solmat.2010.05.026 Single walled carbon nanotube network electrodes for dye solar cells 

  76. J Phys Chem Shapter 114 6778 2010 Photocurrent response from vertically aligned single-walled carbon nanotube arrays 

  77. J Phys Chem Barazzouk 108 17015 2004 10.1021/jp0458405 Single-wall carbon nanotube films for photocurrent generation. a prompt response to visible-light irradiation 

  78. Adv Mater Umeyama 22 15 1767 2010 10.1002/adma.200903056 Selective formation and efficient photocurrent generation of fullerene-single-walled carbon nanotube composites 

  79. Chemistry Umeyama 14 16 4875 2008 10.1002/chem.200702053 Clusterization, electrophoretic deposition, and photoelectrochemical properties of fullerene-functionalized carbon nanotube composites 

  80. Renew Sustain Energy Rev Baños 15 4 1753 2011 10.1016/j.rser.2010.12.008 Optimization methods applied to renewable and sustainable energy: a review 

  81. Appl Phys Lett Jia 98 13 133115 2011 10.1063/1.3573829 Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency 

  82. Appl Phys Lett Yu 69 3042 1996 10.1063/1.116833 The junction characteristics of carbonaceous film/n-type silicon (C/n-Si) layer photovoltaic cell 

  83. Appl Phys Lett Lee 72 106 1998 10.1063/1.120659 Boron-doped amorphous diamondlike carbon as a new ptype window material in amorphous silicon p-i-n solar cells 

  84. Appl Phys Lett Krishna 77 1472 2000 10.1063/1.1290687 Photovoltaic and spectral photoresponse characteristics of n-C/p-C solar cell on a p-silicon substrate 

  85. Sol Energy Mater Sol Cells Ma 69 339 2001 10.1016/S0927-0248(00)00400-1 Boron-doped diamond-like amorphous carbon as photovoltaic films in solar cell 

  86. J Non-Cryst Solids Tian 336 32 2004 10.1016/j.jnoncrysol.2003.12.045 The a-C:H/p-Si solar cell deposited by pulsed laser deposition 

  87. Sol Energy Mater Sol Cells Rusop 90 3205 2006 10.1016/j.solmat.2006.06.018 Photovoltaic properties of n-C:P/p-Si cells deposited by XeCl eximer laser using graphite target 

  88. Appl Phys Lett Han 90 083508 2007 10.1063/1.2539767 Photovoltaic characteristics of amorphous silicon solar cells using boron doped tetrahedral amorphous carbon films as p-type window materials 

  89. Adv Mater Jia 20 4594 2008 10.1002/adma.200801810 Nanotube-silicon heterojunction solar cells 

  90. Appl Phys Lett Li 91 253112 2007 10.1063/1.2827189 Processing of fullerene-single wall carbon nanotube complex for bulk heterojunction photovoltaic cells 

  91. Relat Mater Somani 17 585 2008 10.1016/j.diamond.2008.01.084 Carbon nanotube incorporation: a new route to improve the performance of organic-inorganic heterojunction solar cells 

  92. Appl Phys Lett Fan 93 143103 2008 10.1063/1.2996270 Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells 

  93. Electrochem Commun Hong 10 1555 2008 10.1016/j.elecom.2008.08.007 Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells 

  94. ChemNanoMat Yu 2015 Application of polymer interlayers in silicon-carbon nanotube heterojunction solar cells 

  95. Renew Sustain Energy Rev Parida 15 3 1625 2011 10.1016/j.rser.2010.11.032 A review of solar photovoltaic technologies 

  96. Sol Energy Mater Sol Cells Ulbricht 91 416 2007 10.1016/j.solmat.2006.10.002 Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells 

  97. Appl Phys Lett Rowell 88 233506 2006 10.1063/1.2209887 Organic solar cells with carbon nanotube network electrodes 

  98. Polym Adv Tech Yang 17 500 2006 10.1002/pat.740 Thinner-film plastic photovoltaic cells based on different C60 derivatives 

  99. Appl Phys Lett Kalita 2 063508 2008 10.1063/1.2844881 Fullerene (C60) decoration in oxygen plasma treated multiwalled carbon nanotubes for photovoltaic application 

  100. Nano Res Song 7 1370 2014 10.1007/s12274-014-0502-3 Highly flexible and transparent conducting silver nanowire/ZnO composite film for organic solar cells 

  101. Diam Relat Mater Somani 585 2008 10.1016/j.diamond.2008.01.084 Carbon nanotube incorporation: A new route to improve the performance of organic-inorganic heterojunction solar cells 

  102. Appl Phys Lett Somani 89 223505 2006 10.1063/1.2393039 Improving photovoltaic response of poly(3-hexylthiophene)/n-Si heterojunction by incorporating double walled carbon nanotubes 

  103. Nanotechnology Somani 18 185708 2007 10.1088/0957-4484/18/18/185708 Improving the photovoltaic response of a poly(3-octylthiophene)/n-Si heterojunction by incorporating double-walled carbon nanotubes 

  104. Jpn J Appl Phys Somani 47 1219 2008 10.1143/JJAP.47.1219 Double-walled carbon nanotubes-incorporated donor-acceptor-type organic photovoltaic devices using poly(3-octylthiophene) and C-60 

  105. Appl Phys Lett Somani 93 033315 2008 10.1063/1.2963470 Application of metal nanoparticles decorated carbon nanotubes in photovoltaics 

  106. Appl Phys Lett Somani 91 173503 2007 10.1063/1.2801624 Toward organic thick film solar cells: three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods 

  107. Mater Horiz Cai 2 1 37 2015 10.1039/C4MH00140K Recent advances in antireflective surfaces based on nanostructure arrays 

  108. Prog Mater Sci Yao 61 94 2014 10.1016/j.pmatsci.2013.12.003 Recent progress in antireflection and self-cleaning technology - from surface engineering to functional surfaces 

  109. Int J Hydrogen Energy Mohamed 40 40 14031 2015 10.1016/j.ijhydene.2015.07.064 Photoelectrochemical behavior of bimetallic Cu-Ni and monometallic Cu, Ni doped TiO2 for hydrogen production 

  110. Int J Hydrogen Energy Bashiri 40 18 6021 2015 10.1016/j.ijhydene.2015.03.019 Hydrogen production from water photosplitting using Cu/TiO2 nanoparticles: Effect of hydrolysis rate and reaction medium 

  111. Angew Chem Int Ed Wang 47 2990 2008 10.1002/anie.200704909 Transparent carbon films as electrodes in organic solar cells 

  112. Adv Mater Liu 20 3924 2008 10.1002/adma.200800366 Organic photovoltaic devices based on a novel acceptor material: graphene 

  113. Nano Lett Wang 8 323 2008 10.1021/nl072838r Transparent, conductive graphene electrodes for dye-sensitized solar cells 

  114. J Phys Chem Brown 112 4776 2008 Single-walled carbon nanotube scaffolds for dye-sensitized solar cells 

  115. Energy Mater Sol Cells Lee 92 1628 2008 10.1016/j.solmat.2008.07.012 Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells 

  116. Nanotechnology Yen 19 375305 2008 10.1088/0957-4484/19/37/375305 Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dyesensitized solar cells 

  117. Compos Interfaces Ratha 21 3 251 2014 10.1080/15685543.2014.864530 Nanotitania-coated multi-walled carbon nanotube composite by facile colloidal processing route for photocatalytic applications 

  118. Appl Phys Lett Fan 93 143103 2008 10.1063/1.2996270 Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells 

  119. Electrochem Commun Hong 10 1555 2008 10.1016/j.elecom.2008.08.007 Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells 

  120. Macromol Res Gong 22 4 397 2014 10.1007/s13233-014-2055-4 Dispersion controlled platinum/multi-walled carbon nanotube hybrid for counter electrodes of dye-sensitized solar cel 

  121. Acc Chem Res Sun 38 644 2005 10.1021/ar040224c Bioinspired surfaces with special wettability 

  122. Nano Today Li 5 117 2010 10.1016/j.nantod.2010.03.001 Antireflective surfaces based on biomimetic nanopillared arrays 

  123. Colloids Surf A: Physicochem Eng Asp Kim 465 77 2015 10.1016/j.colsurfa.2014.10.029 Fabrication of a superhydrophobic surface via spraying with polystyrene and multi-walled carbon nanotubes 

  124. J Sol-Gel Sci Technol Zhao 69 1 107 2013 10.1007/s10971-013-3192-5 Superhydrophobic surface fabricated by modifying silica coated multiwalled carbon nanotubes composites 

  125. Nano Lett Gong 14 9 5308 2014 10.1021/nl5027452 Polychiral semiconducting carbon nanotube-fullerene solar cells 

  126. Nano Lett Wadhwa 11 6 2419 2011 10.1021/nl200811z Electrolyte-induced inversion layer Schottky junction solar cells 

  127. Gadhadar Reddy NP, Divyashree Iyer, Carbon-nanotube based space solar power. In: Proceedings of the 4th space solar power international student and young professional design competition. 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로