$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Automatic graphene transfer system for improved material quality and efficiency 원문보기

Scientific reports, v.6, 2016년, pp.21676 -   

Boscá, Alberto (Instituto de Sistemas Optoelectró) ,  Pedrós, Jorge (nicos y Microtecnologí) ,  Martínez, Javier (a, Universidad Polité) ,  Palacios, Tomás (cnica de Madrid , Madrid, 28040, Spain) ,  Calle, Fernando (Instituto de Sistemas Optoelectró)

Abstract AI-Helper 아이콘AI-Helper

In most applications based on chemical vapor deposition (CVD) graphene, the transfer from the growth to the target substrate is a critical step for the final device performance. Manual procedures are time consuming and depend on handling skills, whereas existing automatic roll-to-roll methods work w...

참고문헌 (38)

  1. Bonaccorso F. , Sun Z. , Hasan T. & Ferrari A. C. Graphene photonics and optoelectronics . Nature Photonics 4 , 611 ( 2010 ). 

  2. Avouris P. Graphene: Electronic and Photonic Properties and Devices . Nano Letters 10 , 4285 ( 2010 ). 20879723 

  3. Grigorenko A. N. , Polini M. & Novoselov K. S. Graphene plasmonics . Nature Photonics 6 , 749 ( 2012 ). 

  4. Miao X. et al. High efficiency graphene solar cells by chemical doping . Nano Letters 12 , 2745 ( 2012 ). 22554195 

  5. Reina A. et al. Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates . The Journal of Physical Chemistry C 112 , 17741 ( 2008 ). 

  6. Reina A. et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition . Nano Letters 9 , 30 ( 2009 ). 19046078 

  7. Li X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes . Nano Letters 9 , 4359 ( 2009 ). 19845330 

  8. Liang X. et al. Toward clean and crackless transfer of graphene . ACS Nano 5 , 9144 ( 2011 ). 21999646 

  9. Hallam T. , Wirtz C. & Duesberg G. S. Polymer-assisted transfer printing of graphene composite films . Physica Status Solidi (b) 250 , 2668 ( 2013 ). 

  10. Hallam T. , Berner N. C. , Yim C. & Duesberg G. S. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer . Advanced Materials Interfaces 1 , 1400115 ( 2014 ). 

  11. Dean C. R. et al. Boron nitride substrates for high-quality graphene electronics . Nature Nanotechnology 5 , 722 ( 2010 ). 

  12. Ponomarenko L. A. et al. Tunable metal-insulator transition in double-layer graphene heterostructures . Nature Physics 7 , 958 ( 2011 ). 

  13. Dean C. et al. Graphene based heterostructures . Solid State Communications 152 , 1275 ( 2012 ). 

  14. Georgiou T. et al. Vertical field-effect transistor based on graphene-WS 2 heterostructures for flexible and transparent electronics . Nature Nanotechnology 8 , 100 ( 2013 ). 

  15. Wang Y. et al. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst . ACS Nano 5 , 9927 ( 2011 ). 22034835 

  16. Gao L. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum . Nature Communications 3 , 699 ( 2012 ). 

  17. de la Rosa C. J. L. et al. Frame assisted H 2 O electrolysis induced H 2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu . Applied Physics Letters 102 , 022101 ( 2013 ). 

  18. Lee Y. et al. Wafer-scale synthesis and transfer of graphene films . Nano Letters 10 , 490 ( 2010 ). 20044841 

  19. Suk J. W. et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates . ACS Nano 5 , 6916 ( 2011 ). 21894965 

  20. Kang J. et al. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing . ACS Nano 6 , 5360 ( 2012 ). 22631604 

  21. Chen X.-D. et al. High-quality and efficient transfer of large-area graphene films onto different substrates . Carbon 56 , 271 ( 2013 ). 

  22. Yang S. Y. et al. Metal-Etching-Free Direct Delamination and Transfer of Single-Layer Graphene with a High Degree of Freedom . Small 11 , 175 ( 2015 ). 25104479 

  23. Kim H. H. , Chung Y. , Lee E. , Lee S. K. & Cho K. Water-Free Transfer Method for CVD-Grown Graphene and Its Application to Flexible Air-Stable Graphene Transistors . Advanced Materials 26 , 3213 ( 2014 ). 24633953 

  24. Gao L. et al. Face-to-face transfer of wafer-scale graphene films . Nature 505 , 190 ( 2013 ). 24336218 

  25. Wang D.-Y. et al. Clean-lifting transfer of large-area residual-free graphene films . Advanced Materials 25 , 4521 ( 2013 ). 23813552 

  26. Jung W. et al. Ultraconformal Contact Transfer of Monolayer Graphene on Metal to Various Substrates . Advanced Materials 26 , 6394 ( 2014 ). 25042593 

  27. Bae S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes . Nature Nanotechnology 5 , 574 ( 2010 ). 

  28. Kobayashi T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process . Applied Physics Letters 102 , 023112 ( 2013 ). 

  29. Decher G. , Hong J. & Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces . Thin Solid Films 210–211 , 831 ( 1992 ). 

  30. Raj R. , Maroo S. C. & Wang E. N. Wettability of graphene . Nano Letters 13 , 1509 ( 2013 ). 23458704 

  31. Yuan J. , Feng J. & Cho S. K. Cheerios Effect Controlled by Electrowetting . Langmuir 31 , 8502 ( 2015 ). 26146953 

  32. Sun Z. et al. Growth of graphene from solid carbon sources . Nature 2 , 549 ( 2010 ). 21068724 

  33. Boscá A. , Pedrós J. , Martínez J. & Calle F. Method for extracting relevant electrical parameters from graphene field-effect transistors using a physical model . Journal of Applied Physics 117 , 044504 ( 2015 ). 

  34. Sangwan V. K. et al. Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics . Applied Physics Letters 104 , 5 ( 2014 ). 

  35. Lee J. E. , Ahn G. , Shim J. , Lee Y. S. & Ryu S. Optical separation of mechanical strain from charge doping in graphene . Nature Communications 3 , 1024 ( 2012 ). 

  36. Das A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor . Nature Nanotechnology 3 , 210 ( 2008 ). 

  37. Das A. et al. Phonon renormalization in doped bilayer graphene . Physical Review B 79 , 155417 ( 2009 ). 

  38. Mafra D. L. et al. Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering . Physical Review B 76 , 233407 ( 2007 ). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로