$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

DPHX (dew point evaporative heat exchanger): System design and performance analysis

Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, v.101, 2016년, pp.132 - 145  

Ham, S.W. ,  Jeong, J.W.

Abstract AI-Helper 아이콘AI-Helper

The main purpose of this study is to propose a new type of DP-IEC (dew point evaporative cooler), a DPHX (dew point evaporative heat exchanger). A DP-IEC, known as regenerative evaporative cooler or M-cycle indirect evaporative cooler, has drawn great attention from researchers because it can theore...

주제어

참고문헌 (57)

  1. ASHRAE Trans Glanville 117 1 111 2011 Dew point evaporative cooling: technology review and fundamentals 

  2. Goetzler 2014 Energy savings potential and RD& d opportunities for non-vapor-compression HVAC technologies 

  3. Renew Sustain Energy Rev Duan 16 6823 2012 10.1016/j.rser.2012.07.007 Indirect evaporative cooling: past, present and future potentials 

  4. Energy Hsu 14 757 1989 10.1016/0360-5442(89)90009-1 Optimization of wet-surface heat exchangers 

  5. Appl Therm Eng Zhao 28 1942 2008 10.1016/j.applthermaleng.2007.12.006 Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling 

  6. Appl Therm Eng Hasan 30 2460 2010 10.1016/j.applthermaleng.2010.06.017 Indirect evaporative cooling of air to a sub-wet bulb temperature 

  7. Energy Build Riangvilaikul 42 2241 2010 10.1016/j.enbuild.2010.07.020 Numerical study of a novel dew point evaporative cooling system 

  8. Energy Build Riangvilaikul 42 637 2010 10.1016/j.enbuild.2009.10.034 An experimental study of a novel dew point evaporative cooling system 

  9. Kozubal 2010 Coolerado 5 ton RTU performance: western cooling challenge results 

  10. Energy Zhan 36 6790 2011 10.1016/j.energy.2011.10.019 Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling - paving the path toward sustainable cooling of buildings 

  11. Build Environ Zhan 46 657 2011 10.1016/j.buildenv.2010.09.011 Numerical study of a M-cycle cross-flow heat exchanger for indirect evaporative cooling 

  12. Energy Build Bruno 43 3475 2011 10.1016/j.enbuild.2011.09.013 On-site experimental testing of a novel dew point evaporative cooler 

  13. Int J Heat Mass Transf Lee 65 173 2013 10.1016/j.ijheatmasstransfer.2013.05.069 Experimental study of a counter flow regenerative evaporative cooler with finned channels 

  14. Energy Build Ahmad 62 278 2013 10.1016/j.enbuild.2013.03.013 Performance evaluation of an indirect evaporative cooler under controlled environmental conditions 

  15. Energy Anisimov 2014 10.1016/j.energy.2014.08.055 Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling 

  16. Energy Convers Manag Pandelidis 90 62 2015 10.1016/j.enconman.2014.11.008 Numerical analysis of the heat and mass transfer processes in selected M-Cycle heat exchangers for the dew point evaporative cooling 

  17. Energy Build Pandelidis 87 413 2014 10.1016/j.enbuild.2014.11.042 Numerical analysis of the selected operational and geometrical aspects of the M-Cycle heat and mass exchanger 

  18. Appl Therm Eng Pandelidis 84 211 2015 10.1016/j.applthermaleng.2015.03.058 Comparison study of the counter-flow regenerative evaporative heat exchangers with numerical methods 

  19. Energy Convers Manag Anisimov 88 426 2014 10.1016/j.enconman.2014.08.055 Numerical analysis of selected evaporative exchangers with the Maisotsenko cycle 

  20. Energy Build Rogdakis 70 497 2014 10.1016/j.enbuild.2013.10.013 Experimental and computational evaluation of a Maisotsenko evaporative cooler at Greek climate 

  21. Appl Energy Cui 136 979 2014 10.1016/j.apenergy.2014.04.040 Numerical simulation of a novel energy-efficient dew-point evaporative air cooler 

  22. Appl Energy adi 132 524 2014 10.1016/j.apenergy.2014.07.040 Experimental and numerical investigation of a dew-point cooling system for thermal comfort in buildings 

  23. Energy Build Heidarinejad 92 351 2015 10.1016/j.enbuild.2015.01.034 Novel modeling of an indirect evaporative cooling system with cross-flow configuration 

  24. Appl Therm Eng Moshari 89 669 2015 10.1016/j.applthermaleng.2015.06.046 Numerical study of regenerative evaporative coolers for sub-wet bulb cooling with cross-and counter-flow configuration 

  25. Int J Heat Mass Transf Bolotin 88 224 2015 10.1016/j.ijheatmasstransfer.2015.04.072 Comparative analysis of the cross-flow indirect evaporative air coolers 

  26. DOE 2012 NSIDC data center: energy reduction strategies airside economization and unique indirect evaporative cooling 

  27. Kozubal 2012 Development and analysis of desiccant enhanced evaporative air conditioner prototype 

  28. Appl Therm Eng Gao 88 288 2015 10.1016/j.applthermaleng.2014.08.066 Experimental investigation on integrated liquid desiccant - indirect evaporative air cooling system utilizing the Maisotesenko - cycle 

  29. Energy Convers Manag Buker 101 239 2015 10.1016/j.enconman.2015.05.026 Experimental investigation of a building integrated photovoltaic/thermal roof collector combined with a liquid desiccant enhanced indirect evaporative cooling system 

  30. Energy Build Gao 86 16 2015 10.1016/j.enbuild.2014.09.049 Numerical study on performance of a desiccant cooling system with indirect evaporative cooler 

  31. Int J Refrig Goldsworthy 34 148 2011 10.1016/j.ijrefrig.2010.07.005 Optimisation of a desiccant cooling system design with indirect evaporative cooler 

  32. Int J Refrig Chung 34 922 2011 10.1016/j.ijrefrig.2011.03.003 Contributions of system components and operating conditions to the performance of desiccant cooling systems 

  33. Int J Heat Mass Transf Pandelidis 81 207 2015 10.1016/j.ijheatmasstransfer.2014.10.033 Performance study of the Maisotsenko Cycle heat exchangers in different air-conditioning applications 

  34. Energy Convers Manag Cui 102 140 2015 10.1016/j.enconman.2015.02.025 Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate 

  35. Energy adi 71 80 2014 10.1016/j.energy.2014.04.077 Experimental investigation of a biomass-fuelled micro-scale tri-generation system with an organic Rankine cycle and liquid desiccant cooling unit 

  36. Energy Convers Manag Woods 65 208 2013 10.1016/j.enconman.2012.08.007 A desiccant-enhanced evaporative air conditioner: numerical model and experiments 

  37. Appl Therm Eng Hettiarachchi 27 1841 2007 10.1016/j.applthermaleng.2007.01.014 The effect of longitudinal heat conduction in cross flow indirect evaporative air coolers 

  38. Liu 2014 Analysis of indirect evaporative heat exchangers: modeling and experimentation 

  39. Int J Heat Mass Transf Anisimov 84 974 2015 10.1016/j.ijheatmasstransfer.2015.01.087 Theoretical study of the basic cycles for indirect evaporative air cooling 

  40. Cengel 2010 Heat and mass transfer: fundamentals and applications 

  41. Energy Build Kim 96 285 2015 10.1016/j.enbuild.2015.03.043 Practical thermal performance correlations for a wet-coil indirect evaporative cooler 

  42. Shah 1978 Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data 

  43. Jones E, Oliphant T, Peterson P, SciPy: open source scientific tools for Python. 

  44. Comput Sci Eng van der 13 2011 The NumPy array: a structure for efficient numerical computation 

  45. Lee 2010 Thermal design: heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells 

  46. ANSYS 2013 ANSYS fluent release 15.0 

  47. HVAC & R Res Woods 19 663 2013 10.1080/10789669.2013.797861 Combining liquid desiccant dehumidification with a dew-point evaporative cooler: a design analysis 

  48. 2013 2013 ASHRAE handbook: fundamentals 

  49. Pacific Gas and Electric Company 2009 Design guidelines: advanced variable air volume (VAV) systems 

  50. ASHRAE 2013 ANSI/ASHRAE standard 55-2013, thermal environmental conditions for human occupancy 

  51. ASHRAE 2013 ANSI/ASHRAE standard 62.1-2013, ventilation for accecptable indoor air quality 

  52. Sol Energy Fumo 72 351 2002 10.1016/S0038-092X(02)00013-0 Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration 

  53. Energy Convers Manag Liu 52 180 2011 10.1016/j.enconman.2010.06.057 Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions 

  54. Int J Heat Mass Transf Longo 48 5240 2005 10.1016/j.ijheatmasstransfer.2005.07.011 Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant 

  55. EnergyPlus 2013 EnergyPlus input output reference 

  56. EnergyPlus 2013 EnergyPlus engineering reference 

  57. ASHRAE and The Green Grid 2014 PUE: a comprehensive examination of the metric 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로