$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Wheatstone bridge configuration for evaluation of plasmonic energy transfer 원문보기

Scientific reports, v.6, 2016년, pp.24423 -   

Gosciniak, J. (Tyndall National Institute, University College Cork, Lee Maltings , Prospect Row, Cork, Ireland) ,  Mooney, M. (Seagate Technology, 1 Disc Drive, Springtown Industrial Estate , Londonderry, Northern Ireland, BT48 OBF.) ,  Gubbins, M. (Seagate Technology, 1 Disc Drive, Springtown Industrial Estate , Londonderry, Northern Ireland, BT48 OBF.) ,  Corbett, B. (Tyndall National Institute, University College Cork, Lee Maltings , Prospect Row, Cork, Ireland)

Abstract AI-Helper 아이콘AI-Helper

We propose an internal (on-chip) Wheatstone bridge configuration to evaluate the efficiency of near-field transducers (NFT) as used in heat-assisted magnetic recording (HAMR). The electric field enhancement between the transducer and the image plane is monitored by measuring the resistance of metal ...

참고문헌 (36)

  1. Maier S. A. & H. A., Atwater H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures . J. of Appl. Phys. 98 (1), 011101 ( 2005 ). 

  2. Barnes W. L. , Dereux A. & Ebbesen T. W. Surface plasmon subwavelength optics . Nature 424 , 824 – 830 ( 2003 ). 12917696 

  3. Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions . Science 311 , 189 – 193 ( 2006 ). 16410515 

  4. Pleros N. et al. Tb/s switching fabrics for optical interconnects using heterointegration of plasmonics and silicon photonics: The FP7 PLATON approach, 23 rd Annual Meeting IEEE Photonics Soc. 165–166 (2010). 

  5. Kumar A. et al. Dielectric-loaded plasmonic waveguide components: Going practical, Laser & Phot . Rev . 7 (6), 938 – 954 ( 2013 ). 

  6. Novotny L. & van Hulst N. Antennas for light . Nature Photon . 5 , 83 – 90 ( 2011 ). 

  7. Cubukcu E. , Kort E. A. , Crozier K. B. & Capasso F. Plasmonic laser antenna . Appl. Phys. Lett. 89 , 093120 ( 2006 ). 

  8. Knight M. W. , Sobhani H. , Nordlander P. & Halas N. J. Photodetection with active optical antennas . Science 332 , 702 – 704 ( 2011 ). 21551059 

  9. Anker J. N. et al. Biosensing with plasmonic nanosensors . Nature Mater . 7 , 442 – 453 ( 2008 ). 18497851 

  10. Challener W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer . Nature Photon . 3 , 220 – 224 ( 2009 ). 

  11. Stipe B. C. et al. Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna . Nature Photon . 4 , 484 – 488 ( 2010 ). 

  12. Zhou N. et al. Plasmonic near-field transducer for heat-assisted magnetic recording . Nanophotonics 3 (3), 141 – 155 ( 2014 ). 

  13. Martin Y. C. , Hamann H. F. & Kumar Wickramasinghe H. Strength of the electric field in apertureless near-field optical microscopy . J. of Appl. Phys. 89 , 5774 ( 2001 ). 

  14. Matsumoto T. , Akagi F. , Mochizuki M. , Miyamoto H. & Stipe B. Integrated head design using a nanobeak antenna for thermally assisted magnetic recording . Opt. Express 20 (17), 18946 – 18954 ( 2012 ). 23038534 

  15. Gosciniak J. , Mooney M. , Gubbins M. & Corbett B. Novel droplet near-field transducer for heat-assisted magnetic recording . Nanophotonics 4 (1), 503 – 510 ( 2015 ). 

  16. Gosciniak J. , Mooney M. , Gubbins M. & Corbett B. Mach-Zehnder Interferometer waveguide as a light delivery system for a heat-assisted magnetic recording . IEEE Transactions on Magnetics 52 (2), 3000307 ( 2015 ). 

  17. Peng Ch . Cross-polarization detecting surface-plasmon resonance of near-field transducer . Appl. Phys. Lett. 104 , 061114 ( 2014 ). 

  18. Bouhelier A. et al. Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods . Phys. Rev. Lett. 95 , 267405 ( 2005 ). 16486405 

  19. Taubner T. , Keilmann F. & Hillenbrand R. Nanoscale-resolved subsurface imaging by scattering-type near-field microscopy . Opt. Express 13 (22), 8893 – 8899 ( 2005 ). 19498922 

  20. Gosciniak J. , Nielsen M. G. , Markey L. , Dereux A. & Bozhevolnyi S. I. Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges . Opt. Express 21 (5), 5300 – 5308 ( 2013 ). 23482101 

  21. Kumar A. et al. Power monitoring in dielectric-loaded surface plasmon–polariton waveguides . Opt. Express 19 (4), 2972 – 2978 ( 2011 ). 21369121 

  22. A., Ghoreyshi A. & Victora R. H. Heat assisted magnetic recording with patterned FePt recording media using lollipop near field transducer.” J. of. Appl. Phys. 115 , 17B719 ( 2014 ). 

  23. S., Bhargava S. & Yablonovitch E. HAMR thermal reliability via inverse electromagnetic design, arXiv:1407.3405v1 (2014). 

  24. Zhou N. , Traverso L. M. & Xu X. Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording . Nanotechnology 26 , 134001 – 7 ( 2015 ). 25759907 

  25. Peng Ch ., Mihalcea Ch ., Buchel D. , Challener W. A. & Gage E. C. Near-field optical recording using a planar solid immersion mirror . Appl. Phys. Lett. 87 , 151105 ( 2005 ). 

  26. Gosciniak J. , Markey L. , Dereux A. & Bozhevolnyi S. I. Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches . Nanotechnology 23 , 444008 ( 2012 ). 23080354 

  27. Gosciniak J. , Markey L. , Dereux A. & Bozhevolnyi S. I. Efficient thermo-optically controlled Mach-Zehnder interferometers using dielectric-loaded plasmonic waveguides . Opt. Express 20 (15), 16300 – 16309 ( 2012 ). 

  28. Powell S. P. , Black E. J. , Schlesinger T. E. & Bain J. A. The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording . J. of Appl. Phys. 109 , 07B775 ( 2011 ). 

  29. Crozier K. B. , Sundaramuerthy A. , Kino G. S. & Quate C. F. Optical antennas: resonators for local field enhancement,” J. of Appl. Phys. 94 , 4632 – 4642 ( 2003 ). 

  30. Grober R. D. , Schoelkopf R. J. & Prober E. D. Optical antenna: Towards a unity efficiency near-field optical probe . Appl. Phys. Lett. 70 , 1354 – 1356 ( 1997 ). 

  31. Sendur K. & Challener W. Near-field radiation of bow-tie antennas and apertures at optical frequencies . J. Micros . 210 , 279 – 283 ( 2003 ). 

  32. Matsumoto T. , Anzai Y. , Shintani T. , Nakamura K. & Nishida T. Writing 40 nm marks by using a beaked metallic plate near-field optical probe . Opt. Lett. 31 , 259 – 261 ( 2006 ). 16441049 

  33. Matsumoto T. et al. Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate . Appl. Phys. Lett. 93 , 031108 ( 2008 ). 

  34. Peng C. Efficient excitation of a monopole optical transducer for a near-field recording . J. of Appl. Phys. 112 , 043108 ( 2012 ). 

  35. Gosciniak J. , Justice J. , Khan U. & Corbet B. Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording, MRS Advances, doi:10.1557/adv.2016.22 (2016). 

  36. Johnson R. W. & Christy P. B. Optical constants of the noble metals . Phys. Rev. B 6 , 4370 – 4379 ( 1972 ). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로