$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate 원문보기

Scientific reports, v.6, 2016년, pp.27226 -   

Miao, Shida (Department of Mechanical and Aerospace Engineering, The George Washington University , Washington DC 20052, USA) ,  Zhu, Wei (Department of Mechanical and Aerospace Engineering, The George Washington University , Washington DC 20052, USA) ,  Castro, Nathan J. (Department of Mechanical and Aerospace Engineering, The George Washington University , Washington DC 20052, USA) ,  Nowicki, Margaret (Department of Mechanical and Aerospace Engineering, The George Washington University , Washington DC 20052, USA) ,  Zhou, Xuan (Department of Mechanical and Aerospace Engineering, The George Washington University , Washington DC 20052, USA) ,  Cui, Haitao (Department of Mechanical and Aerospace Engineering, The George Washington University , Washington DC 20052, USA) ,  Fisher, John P. (Fischell Department of Bioengineering, University of Maryland , College Park, MD 20742, USA) ,  Zhang, Lijie Grace (Department of Mechanical and Aerospace Engineering, Th)

Abstract AI-Helper 아이콘AI-Helper

Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipoten...

참고문헌 (30)

  1. Melchels F. P. , Feijen J. & Grijpma D. W. A review on stereolithography and its applications in biomedical engineering . Biomaterials 31 , 6121 – 6130 ( 2010 ). 20478613 

  2. Miao S. , Wang P. , Su Z. & Zhang S. Vegetable-oil-based polymers as future polymeric biomaterials . Acta Biomater. 10 , 1692 – 1704 ( 2014 ). 24012607 

  3. Liu Z. . Phosphoester cross-linked vegetable oil to construct a biodegradable and biocompatible elastomer . Soft Matter 8 , 5888 – 5895 ( 2012 ). 

  4. Luo C. , Grigsby W. J. , Edmonds N. R. & Al-Hakkak J. Vegetable oil thermosets reinforced by tannin-lipid formulations . Acta Biomater. 9 , 5226 – 5233 ( 2013 ). 22975626 

  5. Miao S. . Soybean oil-based polyurethane networks as candidate biomaterials: Synthesis and biocompatibility . Eur. J. Lipid Sci. Tech. 114 , 1165 – 1174 ( 2012 ). 

  6. Garrison T. F. , Kessler M. R. & Larock R. C. Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings . Polymer 55 , 1004 – 1011 ( 2014 ). 

  7. Lligadas G. , Ronda J. C. , Galia M. & Cadiz V. Renewable polymeric materials from vegetable oils: a perspective . Mater. Today 16 , 337 – 343 ( 2013 ). 

  8. Gholami H. . Catalyst free-click polymerization: A versatile method for the preparation of soybean oil based poly1, 2, 3-triazoles as coatings with efficient biocidal activity and excellent cytocompatibility . Polymer 62 , 94 – 108 ( 2015 ). 

  9. Biermann U. . Oils and fats as renewable raw materials in chemistry . Angew. Chem. Int. Edit . 50 , 3854 – 3871 ( 2011 ). 

  10. Hu X. . Biomaterials derived from silk–tropoelastin protein systems . Biomaterials 31 , 8121 – 8131 ( 2010 ). 20674969 

  11. Suh J.-K. F. & Matthew H. W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review . Biomaterials 21 , 2589 – 2598 ( 2000 ). 11071608 

  12. Tibbits S. 4D Printing: Multi - Material Shape Change . Architectural Design 84 , 116 – 121 ( 2014 ). 

  13. Gladman A. S. . Biomimetic 4D printing . Nat. Mater. ( 2016 ). 

  14. Ge Q. , Qi H. J. & Dunn M. L. Active materials by four-dimension printing . Appl. Phys. Lett. 103 , 131901 ( 2013 ). 

  15. Ge Q. , Dunn C. K. , Qi H. J. & Dunn M. L. Active origami by 4D printing . Smart Materials and Structures 23 , 094007 ( 2014 ). 

  16. Morrison R. J. . Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients . Sci. Transl, Med. 7 , 285ra64 – 285ra64 ( 2015 ). 

  17. Castro N. J. , O’Brien J. & Zhang L. G. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds . Nanoscale 7 , 14010 – 14022 ( 2015 ). 26234364 

  18. Liu S. Q. . Synthetic hydrogels for controlled stem cell differentiation . Soft Matter 6 , 67 – 81 ( 2010 ). 

  19. Lee S.-J. . Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds . Biomed. Microdevices 10 , 233 – 241 ( 2008 ). 17885804 

  20. Melchels F. P. , Feijen J. & Grijpma D. W. A poly (D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography . Biomaterials 30 , 3801 – 3809 ( 2009 ). 19406467 

  21. Storey R. F. . Synthesis of bioabsorbable networks from methacrylate-endcapped polyesters . Polymer 34 , 4365 – 4372 ( 1993 ). 

  22. Sawhney A. S. , Pathak C. P. & Hubbell J. A. Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly(alpha.-hydroxy acid) diacrylate macromers . Macromolecules 26 , 581 – 587 ( 1993 ). 

  23. Grijpma D. W. , Hou Q. & Feijen J. Preparation of biodegradable networks by photo-crosslinking lactide, ε-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester . Biomaterials 26 , 2795 – 2802 ( 2005 ). 15603775 

  24. Jansen J. , Melchels F. P. , Grijpma D. W. & Feijen J. Fumaric acid monoethyl ester-functionalized poly (D, L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography . Biomacromolecules 10 , 214 – 220 ( 2008 ). 19090782 

  25. Cooke M. N. . Use of stereolithography to manufacture critical‐sized 3D biodegradable scaffolds for bone ingrowth . J. Biomed. Mater. Res. Part B Appl. Biomater . 64 , 65 – 69 ( 2003 ). 12516080 

  26. Xie T. Recent advances in polymer shape memory . Polymer 52 , 4985 – 5000 ( 2011 ). 

  27. Miao S. . Soybean oil-based polyurethane networks: shape-memory effects and surface morphologies . J. Am. Oil Chem. Soc . 90 , 1415 – 1421 ( 2013 ). 

  28. Miao S. . Soybean oil‐based shape‐memory polyurethanes: Synthesis and characterization . Eur. J. Lipid Sci. Tech. 114 , 1345 – 1351 ( 2012 ). 

  29. Bakarich S. E. , Gorkin R. & Spinks G. M. 4D printing with mechanically robust, thermally actuating hydrogels . Macromolecular rapid communications 36 , 1211 – 1217 ( 2015 ). 25864515 

  30. Liu C. . Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior . Macromolecules 35 , 9868 – 9874 ( 2002 ). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로