$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Multimaterial 4D Printing with Tailorable Shape Memory Polymers 원문보기

Scientific reports, v.6, 2016년, pp.31110 -   

Ge, Qi (Digital Manufacturing and Design Center, Singapore University of Technology and Design , Singapore) ,  Sakhaei, Amir Hosein (Digital Manufacturing and Design Center, Singapore University of Technology and Design , Singapore) ,  Lee, Howon (Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, MA, 02139, USA) ,  Dunn, Conner K. (The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, GA, 30332, USA) ,  Fang, Nicholas X. (Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, MA, 02139, USA) ,  Dunn, Martin L. (Digital Manufacturing and Design Center, Singapore University of Technology and Design , Singapore)

Abstract AI-Helper 아이콘AI-Helper

We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer ne...

참고문헌 (67)

  1. Bartlett N. W. et al. A 3D-printed, functionally graded soft robot powered by combustion . Science 349 , 161 – 165 , 10.1126/science.aab0129 ( 2015 ). 26160940 

  2. Ge Q. , Dunn C. K. , Qi H. J. & Dunn M. L. Active origami by 4D printing . Smart Materials and Structures 23 , doi: 10.1088/0964-1726/23/9/094007 ( 2014 ). 

  3. Ge Q. , Qi H. J. & Dunn M. L. Active materials by four-dimension printing . Applied Physics Letters 103 , doi: 10.1063/1.4819837 ( 2013 ). 

  4. Mao Y. et al. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers. Scientific Reports 5 , 13616 , doi: 10.1038/srep13616 ( 2015 ). 26346202 

  5. Raviv D. et al. Active printed materials for complex self-evolving deformations . Scientific Reports 4 , 7422 , doi: 10.1038/srep07422 ( 2014 ). 25522053 

  6. Lendlein A. & Kelch S. Shape-memory polymers . Angewandte Chemie International Edition in English 41 , 2035 – 2057 ( 2002 ). 

  7. Lendlein A. & Kelch S. Shape-memory polymers as stimuli-sensitive implant materials . Clinical Hemorheology and Microcirculation 32 , 105 – 116 ( 2005 ). 15764819 

  8. Long K. N. , Scott T. F. , Qi H. J. , Bowman C. N. & Dunn M. L. Photomechanics of light-activated polymers . Journal of the Mechanics and Physics of Solids 57 , 1103 – 1121 , doi: 10.1016/j.jmps.2009.03.003 ( 2009 ). 

  9. Ryu J. et al. Photo-origami-Bending and folding polymers with light . Applied Physics Letters 100 , 161908 , doi: 10.1063/1.3700719 ( 2012 ). 

  10. Keplinger C. et al. Stretchable, Transparent, Ionic Conductors . Science 341 , 984 – 987 , doi: 10.1126/science.1240228 ( 2013 ). 23990555 

  11. Wang Q. M. , Gossweiler G. R. , Craig S. L. & Zhao X. H. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning . Nature Communications 5 , doi: 10.1038/Ncomms5899 ( 2014 ). 

  12. Yakacki C. M. et al. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications . Biomaterials 28 , 2255 – 2263 , doi: 10.1016/j.biomaterials.2007.01.030 ( 2007 ). 17296222 

  13. Leong T. G. et al. Tetherless thermobiochemically actuated microgrippers . Proc Natl Acad Sci USA 106 , 703 – 708 , doi: 10.1073/pnas.0807698106 ( 2009 ). 19139411 

  14. Mosadegh B. et al. Pneumatic Networks for Soft Robotics that Actuate Rapidly . Advanced Functional Materials 24 , 2163 – 2170 , doi: 10.1002/adfm.201303288 ( 2014 ). 

  15. Kramer R. K. , Majidi C. & Wood R. J. In Robotics and Automation (ICRA), 2011 IEEE International Conference on. 1103–1107. 

  16. Song Y. M. et al. Digital cameras with designs inspired by the arthropod eye . Nature 497 , 95 – 99 , doi: 10.1038/Nature12083 ( 2013 ). 23636401 

  17. Westbrook K. K. et al. Two-way reversible shape memory effects in a free-standing polymer composite . Smart Materials & Structures 20 , doi: 10.1088/0964-1726/20/6/065010 ( 2011 ). 

  18. Yamano I. & Maeno T. Five-fingered robot hand using ultrasonic motors and elastic elements. 2005 IEEE International Conference on Robotics and Automation (ICRA), Vols 1–4 , 2673–26782005). 

  19. Bakarich S. E. , Gorkin R. , Panhuis M. i. h. & Spinks G. M. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels . Macromolecular Rapid Communications 36 , 1211 – 1217 , doi: 10.1002/marc.201500079 ( 2015 ). 25864515 

  20. Zhang Q. , Yan D. , Zhang K. & Hu G. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique . Scientific Reports 5 , 8936 , doi: 10.1038/srep08936 ( 2015 ). 25757881 

  21. Sydney Gladman A. , Matsumoto E. A. , Nuzzo R. G. , Mahadevan L. & Lewis J. A. Biomimetic 4D printing . Nature Materials . 15 , 413 – 418 , doi: 10.1038/nmat4544 ( 2016 ). 26808461 

  22. Mao Y. et al. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials . Scientific Reports 6 , 24761 , doi: 10.1038/srep24761 ( 2016 ). 27109063 

  23. Lendlein A. & Kelch S. Shape-memory polymers . Angew Chem Int Ed Engl 41 , 2035 – 2057 ( 2002 ). 19746597 

  24. Yu K. , Ge Q. & Qi H. J. Reduced Time as a Unified Parameter Determining Fixity and Free Recovery of Shape Memory Polymers . Nature Communication 5 , 3066 ( 2014 ). 

  25. Castro F. , Westbrook K. K. , Long K. N. , Shandas R. & Qi H. J. Effects of thermal rates on the thermomechanical behaviors of amorphous shape memory polymers . Mechanics of Time-Dependent Materials 14 , 219 – 241 , doi: 10.1007/s11043-010-9109-6 ( 2010 ). 

  26. Wu J. et al. Multi-shape active composites by 3D printing of digital shape memory polymers . Scientific Reports 6 , 24224 , doi: 10.1038/srep24224 ( 2016 ). 27071543 

  27. Stratasys. Digital Materials Data Sheet http://usglobalimages.stratasys.com/Main/Files/Material_Spec_Sheets/MSS_PJ_DigitalMaterialsDataSheet.pdf ( 2015 ), Date of access: 5/6/2016. 

  28. Stratasys. Specifications of Stratasys J750, the ultimate full-color, multi-material 3D printer , http://www.stratasys.com/3d-printers/production-series/stratasys-j750 ( 2016 ), Date of access: 5/6/2016. 

  29. Sun C. , Fang N. , Wu D. M. & Zhang X. Projection micro-stereolithography using digital micro-mirror dynamic mask . Sensors and Actuators a-Physical 121 , 113 – 120 , doi: 10.1016/j.sna.2004.12.011 ( 2005 ). 

  30. Zheng X. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system . Review of Scientific Instruments 83 , 125001 , doi: 10.1063/1.4769050 ( 2012 ). 23278017 

  31. Zheng X. Y. et al. Ultralight, Ultrastiff Mechanical Metamaterials . Science 344 , 1373 – 1377 , doi: 10.1126/science.1252291 ( 2014 ). 24948733 

  32. Srivastava V. , Chester S. A. & Anand L. Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations . Journal of the Mechanics and Physics of Solids 58 , 1100 – 1124 , doi: 10.1016/j.jmps.2010.04.004 ( 2010 ). 

  33. Yoon C. et al. Functional stimuli responsive hydrogel devices by self-folding . Smart Materials and Structures 23 , doi: 10.1088/0964-1726/23/9/094008 ( 2014 ). 

  34. Gall K. , Mikulas M. , Munshi N. A. , Beavers F. & Tupper M. Carbon Fiber Reinforced Shape Memory Polymer Composites . Journal of Intelligent Material Systems and Structures 11 , 877 – 886 , 10.1106/ejgr-ewnm-6clx-3x2m ( 2000 ). 

  35. Xin L. et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge . Smart Materials and Structures 18 , 024002 ( 2009 ). 

  36. Merali Z. Profile: Zhong You - ‘Origami Engineer’ Flexes to Create Stronger, More Agile Materials. Science 332 , 1376 – 1377 ( 2011 ). 21680824 

  37. Wu W. N. & You Z. A solution for folding rigid tall shopping bags . P Roy Soc a-Math Phy 467 , 2561 – 2574 , doi: 10.1098/rspa.2011.0120 ( 2011 ). 

  38. Guo X. Y. et al. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications . P Natl Acad Sci USA 106 , 20149 – 20154 , doi: 10.1073/pnas.0907390106 ( 2009 ). 

  39. Myers B. , Bernardi M. & Grossman J. C. Three-dimensional photovoltaics . Applied Physics Letters 96 , 071902 , doi: 10.1063/1.3308490 ( 2010 ). 

  40. Chan V. et al. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography . Lab on a Chip 12 , 88 – 98 , doi: 10.1039/c1lc20688e ( 2012 ). 22124724 

  41. Choi J.-W. , Kim H.-C. & Wicker R. Multi-material stereolithography . Journal of Materials Processing Technology 211 , 318 – 328 , doi: 10.1016/j.jmatprotec.2010.10.003 ( 2011 ). 

  42. Wicker R. B. & MacDonald E. W. Multi-material, multi-technology stereolithography . Virtual and Physical Prototyping 7 , 181 – 194 , doi: 10.1080/17452759.2012.721119 ( 2012 ). 

  43. Zhou C. , Chen Y. , Yang Z. G. & Khoshnevis B. Digital material fabrication using mask-image-projection-based stereolithography . Rapid Prototyping Journal 19 , 153 – 165 , doi: 10.1108/13552541311312148 ( 2013 ). 

  44. Tumbleston J. R. et al. Continuous liquid interface production of 3D objects . Science 347 , 1349 – 1352 , doi: 10.1126/science.aaa2397 ( 2015 ). 25780246 

  45. Anseth K. S. , Wang C. M. & Bowman C. N. Reaction behaviour and kinetic constants for photopolymerizations of multi(meth)acrylate monomers . Polymer 35 , 3243 – 3250 , doi: 10.1016/0032-3861(94)90129-5 ( 1994 ). 

  46. Bowman C. N. , Carver A. L. , Kennett S. N. , Williams M. M. & Peppas N. A. Polymers for information storage systems III. Crosslinked structure of polydimethacrylates . Polymer 31 , 135 – 139 , doi: 10.1016/0032-3861(90)90364-5 ( 1990 ). 

  47. Kannurpatti A. R. & Bowman C. N. Structural evolution of dimethacrylate networks studied by dielectric spectroscopy . Macromolecules 31 , 3311 – 3316 , doi: 10.1021/Ma970721r ( 1998 ). 

  48. Safranski D. L. & Gall K. Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks . Polymer 49 , 4446 – 4455 , doi: 10.1016/j.polymer.2008.07.060 ( 2008 ). 

  49. Ge Q. , Yu K. , Ding Y. F. & Qi H. J. Prediction of temperature-dependent free recovery behaviors of amorphous shape memory polymers . Soft Matter 8 , 11098 – 11105 , doi: 10.1039/C2sm26249e ( 2012 ). 

  50. Nguyen T. D. , Qi H. J. , Castro F. & Long K. N. A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation . Journal of the Mechanics and Physics of Solids 56 , 2792 – 2814 , doi: 10.1016/j.jmps.2008.04.007 ( 2008 ). 

  51. Qi H. J. , Nguyen T. D. , Castro F. , Yakacki C. M. & Shandas R. Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers . Journal of the Mechanics and Physics of Solids 56 , 1730 – 1751 , doi: 10.1016/j.jmps.2007.12.002 ( 2008 ). 

  52. Couchman P. R. Compositional Variation of Glass-Transition Temperatures. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends . Macromolecules 11 , 1156 – 1161 , doi: 10.1021/ma60066a018 ( 1978 ). 

  53. Voit W. et al. High-Strain Shape-Memory Polymers . Advanced Functional Materials 20 , 162 – 171 , 10.1002/adfm.200901409 ( 2010 ). 

  54. Treloar L. R. G. The physics of rubber elasticity . 2d edn, (Clarendon Press, 1958 ). 

  55. Anseth K. S. , Decker C. & Bowman C. N. Real-Time Infrared Characterization of Reaction Diffusion during Multifunctional Monomer Polymerizations . Macromolecules 28 , 4040 – 4043 , doi: 10.1021/ma00115a045 ( 1995 ). 

  56. Lovell L. G. , Stansbury J. W. , Syrpes D. C. & Bowman C. N. Effects of Composition and Reactivity on the Reaction Kinetics of Dimethacrylate/Dimethacrylate Copolymerizations . Macromolecules 32 , 3913 – 3921 , doi: 10.1021/ma990258d ( 1999 ). 

  57. Young J. S. & Bowman C. N. Effect of Polymerization Temperature and Cross-Linker Concentration on Reaction Diffusion Controlled Termination . Macromolecules 32 , 6073 – 6081 , doi: 10.1021/ma9902955 ( 1999 ). 

  58. Lee H. , Xia C. & Fang N. X. First jump of microgel; actuation speed enhancement by elastic instability . Soft Matter 6 , 4342 – 4345 , doi: 10.1039/c0sm00092b ( 2010 ). 

  59. Lee H. , Zhang J. , Jiang H. & Fang N. X. Prescribed Pattern Transformation in Swelling Gel Tubes by Elastic Instability . Physical Review Letters 108 , 214304 ( 2012 ). 23003264 

  60. Westbrook K. K. , Kao P. H. , Castro F. , Ding Y. F. & Qi H. J. A 3D finite deformation constitutive model for amorphous shape memory polymers: A multi-branch modeling approach for nonequilibrium relaxation processes . Mechanics of Materials 43 , 853 – 869 , doi: 10.1016/j.mechmat.2011.09.004 ( 2011 ). 

  61. Yakacki C. M. et al. Strong, tailored, biocompatible shape-memory polymer networks . Advanced Functional Materials 18 , 2428 – 2435 , doi: 10.1002/adfm.200701049 ( 2008 ). 19633727 

  62. Gall K. et al. Thermomechanics of the shape memory effect in polymers for biomedical applications . Journal of Biomedical Materials Research Part A 73A , 339 – 348 , doi: 10.1002/jbm.a.30296 ( 2005 ). 15806564 

  63. Ames N. M. , Srivastava V. , Chester S. A. & Arland L. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications . International Journal of Plasticity 25 , 1495 – 1539 , doi: 10.1016/j.ijplas.2008.11.005 ( 2009 ). 

  64. Anand L. , Ames N. M. , Srivastava V. & Chester S. A. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation . International Journal of Plasticity 25 , 1474 – 1494 , doi: 10.1016/j.ijplas.2008.11.004 ( 2009 ). 

  65. Srivastava V. , Chester S. A. , Ames N. M. & Anand L. A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition . International Journal of Plasticity 26 , 1138 – 1182 , doi: 10.1016/j.ijplas.2010.01.004 ( 2010 ). 

  66. Malachowski K. et al. Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release . Angewandte Chemie-International Edition 53 , 8045 – 8049 , doi: 10.1002/anie.201311047 ( 2014 ). 

  67. Yu K. , Ritchie A. , Mao Y. , Dunn M. L. & Qi H. J. Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials . Procedia IUTAM 12 , 193 – 203 , doi: 10.1016/j.piutam.2014.12.021 ( 2015 ). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로