$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Diffusion of CO2 in Large Crystals of Cu-BTC MOF

Journal of the American Chemical Society, v.138 no.36, 2016년, pp.11449 - 11452  

Tovar, Trenton M. (Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235,) ,  Zhao, Junjie (Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695,) ,  Nunn, William T. (Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695,) ,  Barton, Heather F. (Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695,) ,  Peterson, Gregory W. (Edgewood Chemical Biological Center, U.S. Army, Aberdeen Proving Ground, Maryland 21010,) ,  Parsons, Gregory N. (Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695,) ,  LeVan, M. Douglas (Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235,)

Abstract AI-Helper 아이콘AI-Helper

Carbon dioxide adsorption in metal–organic frameworks has been widely studied for applications in carbon capture and sequestration. A critical component that has been largely overlooked is the measurement of diffusion rates. This paper describes a new reproducible procedure to synthesize milli...

참고문헌 (35)

  1. Sumida, Kenji, Rogow, David L., Mason, Jarad A., McDonald, Thomas M., Bloch, Eric D., Herm, Zoey R., Bae, Tae-Hyun, Long, Jeffrey R.. Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical reviews, vol.112, no.2, 724-781.

  2. Kim, J., Chen, B., Reineke, T. M., Li, H., Eddaoudi, M., Moler, D. B., O'Keeffe, M., Yaghi, O. M.. Assembly of Metal−Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures. Journal of the American Chemical Society, vol.123, no.34, 8239-8247.

  3. Furukawa, Hiroyasu, Ko, Nakeun, Go, Yong Bok, Aratani, Naoki, Choi, Sang Beom, Choi, Eunwoo, Yazaydin, A. Özgür, Snurr, Randall Q., O’Keeffe, Michael, Kim, Jaheon, Yaghi, Omar M.. Ultrahigh Porosity in Metal-Organic Frameworks. Science, vol.329, no.5990, 424-428.

  4. Farha, Omar K., ?zg체r Yazayd캇n, A., Eryazici, Ibrahim, Malliakas, Christos D., Hauser, Brad G., Kanatzidis, Mercouri G., Nguyen, SonBinh T., Snurr, Randall Q., Hupp, Joseph T.. De novo synthesis of a metal??organic framework material featuring ultrahigh surface area and gas storage capacities. Nature chemistry, vol.2, no.11, 944-948.

  5. Farha, Omar K., Eryazici, Ibrahim, Jeong, Nak Cheon, Hauser, Brad G., Wilmer, Christopher E., Sarjeant, Amy A., Snurr, Randall Q., Nguyen, SonBinh T., Yazaydın, A. Özgür, Hupp, Joseph T.. Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?. Journal of the American Chemical Society, vol.134, no.36, 15016-15021.

  6. Grünker, Ronny, Bon, Volodymyr, Müller, Philipp, Stoeck, Ulrich, Krause, Simon, Mueller, Uwe, Senkovska, Irena, Kaskel, Stefan. A new metal–organic framework with ultra-high surface area. Chemical communications : Chem comm, vol.50, no.26, 3450-3452.

  7. Wang, Timothy C., Bury, Wojciech, Gómez-Gualdrón, Diego A., Vermeulen, Nicolaas A., Mondloch, Joseph E., Deria, Pravas, Zhang, Kainan, Moghadam, Peyman Z., Sarjeant, Amy A., Snurr, Randall Q., Stoddart, J. Fraser, Hupp, Joseph T., Farha, Omar K.. Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, vol.137, no.10, 3585-3591.

  8. Li, J.R., Ma, Y., McCarthy, M.C., Sculley, J., Yu, J., Jeong, H.K., Balbuena, P.B., Zhou, H.C.. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination chemistry reviews, vol.255, no.15, 1791-1823.

  9. Keskin, Seda, van Heest, Timothy M., Sholl, David S.. Can Metal-Organic Framework Materials Play a Useful Role in Large‐Scale Carbon Dioxide Separations?. ChemSusChem, vol.3, no.8, 879-891.

  10. Wang, Cheng, Xie, Zhigang, deKrafft, Kathryn E., Lin, Wenbin. Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, vol.133, no.34, 13445-13454.

  11. Fu, Yanghe, Sun, Dengrong, Chen, Yongjuan, Huang, Renkun, Ding, Zhengxin, Fu, Xianzhi, Li, Zhaohui. An Amine‐Functionalized Titanium Metal–Organic Framework Photocatalyst with Visible‐Light‐Induced Activity for CO2 Reduction. Angewandte Chemie. international edition, vol.51, no.14, 3364-3367.

  12. Sun, Dengrong, Fu, Yanghe, Liu, Wenjun, Ye, Lin, Wang, Dengke, Yang, Lin, Fu, Xianzhi, Li, Zhaohui. Studies on Photocatalytic CO2 Reduction over NH2‐Uio‐66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal–Organic Frameworks. Chemistry : a European journal, vol.19, no.42, 14279-14285.

  13. Wang, Sibo, Yao, Wangshu, Lin, Jinliang, Ding, Zhengxin, Wang, Xinchen. Cobalt Imidazolate Metal–Organic Frameworks Photosplit CO2 under Mild Reaction Conditions. Angewandte Chemie. international edition, vol.53, no.4, 1034-1038.

  14. Salles, Fabrice, Jobic, Hervé, Devic, Thomas, Llewellyn, Philip L., Serre, Christian, Férey, Gérard, Maurin, Guillaume. Self and Transport Diffusivity of CO2 in the Metal−Organic Framework MIL-47(V) Explored by Quasi-elastic Neutron Scattering Experiments and Molecular Dynamics Simulations. ACS nano, vol.4, no.1, 143-152.

  15. Sabouni, R., Kazemian, H., Rohani, S.. Carbon dioxide adsorption in microwave-synthesized metal organic framework CPM-5: Equilibrium and kinetics study. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.175, 85-91.

  16. Saha, Dipendu, Bao, Zongbi, Jia, Feng, Deng, Shuguang. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environmental science & technology, vol.44, no.5, 1820-1826.

  17. Zhao, Zhenxia, Li, Zhong, Lin, Y. S.. Adsorption and Diffusion of Carbon Dioxide on Metal−Organic Framework (MOF-5). Industrial & engineering chemistry research, vol.48, no.22, 10015-10020.

  18. Heinke, Lars, Gu, Zhigang, Wöll, Christof. The surface barrier phenomenon at the loading of metal-organic frameworks. Nature communications, vol.5, 4562-.

  19. Fletcher, A. J., Cussen, E. J., Prior, T. J., Rosseinsky, M. J., Kepert, C. J., Thomas, K. M.. Adsorption Dynamics of Gases and Vapors on the Nanoporous Metal Organic Framework Material Ni2(4,4‘-Bipyridine)3(NO3)4: Guest Modification of Host Sorption Behavior. Journal of the American Chemical Society, vol.123, no.41, 10001-10011.

  20. Hu, Xiayi, Brandani, Stefano, Benin, Annabelle I., Willis, Richard R.. Development of a Semiautomated Zero Length Column Technique for Carbon Capture Applications: Study of Diffusion Behavior of CO2 in MOFs. Industrial & engineering chemistry research, vol.54, no.21, 5777-5783.

  21. Liu, Jian, Wang, Yu, Benin, Annabelle I., Jakubczak, Paulina, Willis, Richard R., LeVan, M. Douglas. CO2/H2O Adsorption Equilibrium and Rates on Metal−Organic Frameworks: HKUST-1 and Ni/DOBDC. Langmuir : the ACS journal of surfaces and colloids, vol.26, no.17, 14301-14307.

  22. Sun, Matthew S., Talu, Orhan, Shah, D. B.. Diffusion measurements through embedded zeolite crystals. AIChE journal, vol.42, no.11, 3001-3007.

  23. Yazaydın, A. Özgür, Benin, Annabelle I., Faheem, Syed A., Jakubczak, Paulina, Low, John J., Willis, Richard R., Snurr, Randall Q.. Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules. Chemistry of materials : a publication of the American Chemical Society, vol.21, no.8, 1425-1430.

  24. Yang, Q., Zhong, C.. Molecular Simulation of Carbon Dioxide/Methane/Hydrogen Mixture Adsorption in Metal−Organic Frameworks. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.110, no.36, 17776-17783.

  25. Liu, Bei, Smit, Berend. Comparative Molecular Simulation Study of CO2/N2 and CH4/N2 Separation in Zeolites and Metal−Organic Frameworks. Langmuir : the ACS journal of surfaces and colloids, vol.25, no.10, 5918-5926.

  26. Yang, Qingyuan, Xue, Chunyu, Zhong, Chongli, Chen, Jian‐Feng. Molecular simulation of separation of CO2 from flue gases in CU‐BTC metal‐organic framework. AIChE journal, vol.53, no.11, 2832-2840.

  27. Chui, Stephen S.-Y., Lo, Samuel M.-F., Charmant, Jonathan P. H., Orpen, A. Guy, Williams, Ian D.. A Chemically Functionalizable Nanoporous Material [Cu 3 (TMA) 2 (H 2 O) 3 ] n. Science, vol.283, no.5405, 1148-1150.

  28. Chowdhury, Pradip, Bikkina, Chaitanya, Meister, Dirk, Dreisbach, Frieder, Gumma, Sasidhar. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.117, no.1, 406-413.

  29. Liang, Zhijian, Marshall, Marc, Chaffee, Alan L.. CO2Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X). Energy & fuels : an American Chemical Society journal, vol.23, no.5, 2785-2789.

  30. Li, Lina, Sun, Fuxing, Jia, Jiangtao, Borjigin, Tsolmon, Zhu, Guangshan. Growth of large single MOF crystals and effective separation of organic dyes. CrystEngComm, vol.15, no.20, 4094-4098.

  31. Wang, Y., LeVan, M. D.. Nanopore Diffusion Rates for Adsorption Determined by Pressure-Swing and Concentration-Swing Frequency Response and Comparison with Darken's Equation. Industrial & engineering chemistry research, vol.47, no.9, 3121-3128.

  32. Glover, T. Grant, Wang, Yu, LeVan, M. Douglas. Diffusion of Condensable Vapors in Single Adsorbent Particles Measured via Concentration-Swing Frequency Response. Langmuir : the ACS journal of surfaces and colloids, vol.24, no.23, 13406-13413.

  33. Wang, Yu, Mahle, John J., Furtado, Amanda M. B., Glover, T. Grant, Buchanan, James H., Peterson, Gregory W., LeVan, M. Douglas. Mass Transfer and Adsorption Equilibrium for Low Volatility Alkanes in BPL Activated Carbon. Langmuir : the ACS journal of surfaces and colloids, vol.29, no.9, 2935-2945.

  34. Grajciar, Lukáš, Wiersum, Andrew D., Llewellyn, Philip L., Chang, Jong-San, Nachtigall, Petr. Understanding CO2 Adsorption in CuBTC MOF: Comparing Combined DFT–ab Initio Calculations with Microcalorimetry Experiments. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.36, 17925-17933.

  35. Min Wang, Qing, Shen, Dongmin, Bülow, Martin, Ling Lau, Miu, Deng, Shuguang, Fitch, Frank R, Lemcoff, Norberto O, Semanscin, Jessica. Metallo-organic molecular sieve for gas separation and purification. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.55, no.2, 217-230.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로