$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Manganese oxide catalysts for secondary zinc air batteries: from electrocatalytic activity to bifunctional air electrode performance 원문보기

Electrochimica acta, v.217, 2016년, pp.80 - 91  

Mainar, A.R. ,  Colmenares, L.C. ,  Leonet, O. ,  Alcaide, F. ,  Iruin, J.J. ,  Weinberger, S. ,  Hacker, V. ,  Iruin, E. ,  Urdanpilleta, I. ,  Blazquez, J.A.

Abstract AI-Helper 아이콘AI-Helper

An efficient, durable and low cost air cathode with low polarization between the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for a high performance and durable secondary zinc-air battery. Different valence states and morphologies of MnxOy catalysts were synthetiz...

주제어

참고문헌 (50)

  1. Chem. Soc. Rev. Wang 43 7746 2014 10.1039/C3CS60248F Oxygen electrocatalysts in metal?air batteries: from aqueous to nonaqueous electrolytes 

  2. Int. J. Energy Res. Mainar 2016 Alkaline aqueous electrolytes for secondary zinc?air batteries: an overview 

  3. J. of Power Sources Li 298 102 2015 10.1016/j.jpowsour.2015.08.051 Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: Effects of the crystalline structure of manganese oxides 

  4. Electrochim. Acta Chen 69 295 2012 10.1016/j.electacta.2012.03.001 Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery 

  5. J. of Power Sources Li 298 102 2015 10.1016/j.jpowsour.2015.08.051 Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: Effects of the crystalline structure of manganese oxides 

  6. Electrochim. Acta Valima 85 423 2012 10.1016/j.electacta.2012.08.075 Oxygen reduction reaction catalyzed by e-MnO2: Influence of the crystalline structure on the reaction mechanism 

  7. Chem. Mater. Cheng 22 898 2010 10.1021/cm901698s MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media 

  8. Angew. Chem. Int. Ed. Cheng 52 2474 2013 10.1002/anie.201208582 Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies 

  9. ACS Catal. Tang 4 457 2014 10.1021/cs400938s Effect of Surface Manganese Valence of Manganese Oxides on the Activity of the Oxygen Reduction Reaction in Alkaline Media 

  10. J. Phys. Chem. C Xiao 114 1694 2010 10.1021/jp909386d Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction 

  11. J. Am. Chem. Soc. Gorlin 135 8525 2013 10.1021/ja3104632 In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction 

  12. J. Am. Chem. Soc. Meng 136 11452 2014 10.1021/ja505186m Structure-Property Relationship of Bifunctional MnO2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media 

  13. Chem. Commun. Kuo 51 5951 2015 10.1039/C5CC01152C Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions 

  14. Electrochim. Acta Lima 52 3732 2007 10.1016/j.electacta.2006.10.047 Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction 

  15. ACS Catal. Stoerzinge 5 6021 2015 10.1021/acscatal.5b01444 Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics 

  16. J.Inorganic Materials Huang 28 341 2013 10.3724/SP.J.1077.2012.12474 Preparation of Manganese Dioxide for Oxygen Reduction in Zinc Air Battery by Hydro thermal Method 

  17. J. Am. Chem. Soc. Gorlin 132 13612 2010 10.1021/ja104587v A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation 

  18. Electrochim. Acta Mao 48 1015 2003 10.1016/S0013-4686(02)00815-0 Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts 

  19. Electrochim. Acta Lin 52 6548 2007 10.1016/j.electacta.2007.04.095 Factors influencing the structure of electrochemically prepared a-MnO2 and y-MnO2 phases 

  20. Catalysis Today Poux 189 83 2012 10.1016/j.cattod.2012.04.046 Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction 

  21. J. Phys. Chem. C Roche 111 1434 2007 10.1021/jp0647986 Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism 

  22. Electrochem. Comm. Komo 80 834 2012 10.5796/electrochemistry.80.834 Oxygen Evolution and Reduction Reactions on La0.8Sr0.2CoO3 (001) (110), and (111) Surfaces in an Alkaline Solution 

  23. Phys. Chem. Chem. Phys. Hansen 10 3722 2008 10.1039/b803956a Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT 

  24. ECS Transactions Gorlin 58 735 2013 10.1149/05801.0735ecst The Role of Heat Treatment in Enhanced Activity of Manganese Oxides for the Oxygen Reduction and Evolution Reactions 

  25. Nanotechnology Kalubarme 22 395402 2011 10.1088/0957-4484/22/39/395402 Catalytic characteristics of MnO2 nanostructures for the O2 reduction process 

  26. J. Power Sources Tulloch 188 359 2009 10.1016/j.jpowsour.2008.12.024 Activity of perovskite La1-xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes 

  27. Chem. Mater. Brock 10 2619 1998 10.1021/cm980227h A Review of Porous Manganese Oxide Materials 

  28. American Mineralogist Bish 74 177 1989 Thermal behavior of complex, tunnel-structure manganese oxides 

  29. J. Power Sources Walanda 139 325 2005 10.1016/j.jpowsour.2004.06.062 Hydrothermal MnO2: synthesis, structure, morphology and discharge performance 

  30. J. Electrochem. Soc.: Electrochemical Science and Technology Reutschi 135 2663 1988 10.1149/1.2095406 Cation Vacancies in MnO2 and Their Influence on Electrochemical Reactivity 

  31. Proceeding of The International Seminar on Chemistry Walanda 180 2008 Kinetics and morphology transformation of manganese oxide in acid electrolyte 

  32. J. Solid State Chemistry Walanda 182 1336 2009 10.1016/j.jssc.2009.02.034 Kinetics of Mn2O3 digestion in H2SO4 solutions 

  33. Chem. Mater. Weibel 17 2378 2005 10.1021/cm0403762 The Big Problem of Small Particles: A Comparison of Methods for Determination of Particle Size in Nanocrystalline Anatase Powders 

  34. Electrochem. Soc.: Electrochemical Science and Technology Reutschi 131 2737 1984 10.1149/1.2115399 Cation-Vacancy Model for MnO2: J 

  35. Wieckwski 2010 Fuel cell science. Theory 

  36. J. Power Sources Jörissen 155 23 2006 10.1016/j.jpowsour.2005.07.038 Bifunctional oxygen/air electrodes 

  37. J. Solid State Electrochem. de A. Dias 2013 10.1007/s10008-013-2043-1 The relation between structural features and electrochemical activity of MnO2 nanoparticles synthesized from a polyol-made Mn3O4 precursor 

  38. Nature Park 2015 Understanding hydrothermal transformation from Mn2O3 particles to Na0.55Mn2O4·1.5H2O nanosheets, nanobelts, and single crystalline ultra-long Na4Mn9O 18 nanowires 

  39. Int. J. Electrochem. Sci. Zhang 8 2407 2013 10.1016/S1452-3981(23)14318-5 Hydrothermally Tailoring Low-dimensional MnOx Nanostructure and Their High Electrochemical Performance 

  40. Int. J. Hydrogen Energy Selvakumar 39 21024 2014 10.1016/j.ijhydene.2014.10.088 Development of shape-engineered a-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium 

  41. J. Phys. Chem. C Selvakumar 119 6604 2015 10.1021/jp5127915 Physiochemical Investigation of Shape-Designed MnO2 Nanostructures and Their Influence on Oxygen Reduction Reaction Activity in Alkaline Solution 

  42. J. Power Sources Johnson 68 570 1997 10.1016/S0378-7753(96)02633-X Structural and electrochemical studies of a-manganese dioxide (α-MnO2) 

  43. J. Colloid and Interface Science Prélot 257 77 2003 10.1016/S0021-9797(02)00013-9 Structural-chemical disorder of manganese dioxides 1. Influence on surface properties at the solid-electrolyte interface 

  44. J. Phys. Chem. C Benbow 115 22009 2011 10.1021/jp2055443 Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes 

  45. ACS Appl. Mater. Interfaces Cheng 1 460 2009 10.1021/am800131v 

  46. Electrochim. Acta Liu 205 38 2016 10.1016/j.electacta.2016.04.103 Activating Mn3O4 by Morphology Tailoring for Oxygen Reduction Reaction 

  47. Electrochim. Acta Benhangi 123 42 2014 10.1016/j.electacta.2013.12.102 Manganese Dioxide-based Bifunctional Oxygen Reduction/Evolution Electrocatalysts: Effect of Perovskite Doping and Potassium Ion Insertion 

  48. J. Power Sources Colmenares 190 14 2009 10.1016/j.jpowsour.2009.01.078 Model study on the stability of carbon support materials under polymer electrolyte fuel cell cathode operation conditions 

  49. J. Power Sources Neburchilov 195 1271 2010 10.1016/j.jpowsour.2009.08.100 A review on air cathodes for zinc-air fuel cells 

  50. J. Electrochem. Soc. Suren 163 A846 2016 10.1149/2.0361606jes Development of a High Energy Density Flexible Zinc-Air Battery 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로