$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Ethanol as an electrolyte additive for alkaline zinc-air flow batteries 원문보기

Scientific reports, v.8, 2018년, pp.11273 -   

Hosseini, Soraya (Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand) ,  Han, Siow Jing (Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand) ,  Arponwichanop, Amornchai (Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand) ,  Yonezawa, Tetsu (Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Sapporo, Hokkaido 060-8628 Japan) ,  Kheawhom, Soorathep (Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand)

Abstract AI-Helper 아이콘AI-Helper

Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmental...

참고문헌 (41)

  1. 1. Suren S Kheawhom S Development of a high energy density flexible zinc-air battery J. Electrochem. Soc. 2016 163 A846 A850 10.1149/2.0361606jes 

  2. 2. Gu P Rechargeable zinc-air batteries: a promising way to green energy J. Mater. Chem. A 2017 5 7651 7666 10.1039/C7TA01693J 

  3. 3. Rahman MA Wang X Wen C High energy density metal-air batteries: A review J. Electrochem. Soc. 2013 160 A1759 A1771 10.1149/2.062310jes 

  4. 4. Amunátegui, B., Ibáñez, A., Sierra, M. & Pérez, M. Electrochemical energy storage for renewable energy integration: zinc-air flow batteries. J. Appl. Electrochem . 1–11 (2017). 

  5. 5. Wongrujipairoj K Poolnapol L Arpornwichanop A Suren S Kheawhom S Suppression of zinc anode corrosion for printed flexible zinc-air battery Phys. Status Solidi (b) 2017 254 1600442 n/a 10.1002/pssb.201600442 

  6. 6. Yan S Young K-H Ng KS Effects of salt additives to the koh electrolyte used in ni/mh batteries Batteries 2015 1 54 73 10.3390/batteries1010054 

  7. 7. Mainar R A. et al . Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview Int. J. Energy Res. 2016 40 1032 1049 10.1002/er.3499 

  8. 8. Mainar AR An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc Journal of Energy Storage 2018 15 304 328 10.1016/j.est.2017.12.004 

  9. 9. Patrice R Understanding the second electron discharge plateau in MnO2-based alkaline cells J. Electrochem. Soc. 2001 148 A448 A455 10.1149/1.1362539 

  10. 10. Sapkota P Kim H An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators J. Ind. Eng. Chem. 2010 16 39 44 10.1016/j.jiec.2010.01.024 

  11. 11. Minakshi M Singh P Carter M Prince K The zn-MnO2 battery: The influence of aqueous lioh and koh electrolytes on the intercalation mechanism Electrochem. Solid State Lett. 2008 11 A145 A149 10.1149/1.2932056 

  12. 12. Zhang, X. G. Corrosion and Electrochemistry of Zinc , 1 edn (Springer US, New York, 1996). 

  13. 13. Gilliam RJ Graydon JW Kirk DW Thorpe SJ A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures Int. J. Hydrog. Energy 2007 32 359 364 10.1016/j.ijhydene.2006.10.062 

  14. 14. Sumboja A Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst J. Power Sources 2016 332 330 336 10.1016/j.jpowsour.2016.09.142 

  15. 15. Thomas Goh FW A near-neutral chloride electrolyte for electrically rechargeable zinc-air batteries J. Electrochem. Soc. 2014 161 A2080 A2086 10.1149/2.0311414jes 

  16. 16. Wang Z Meng X Wu Z Mitra S Development of flexible zinc–air battery with nanocomposite electrodes and a novel separator J. Energy Chem. 2017 26 129 138 10.1016/j.jechem.2016.08.007 

  17. 17. Chen, L. et al . New-concept Batteries Based on AqueousLi + /Na + Mixed-ion Electrolytes. Sci. Rep . 3 (2013). 

  18. 18. Fu J A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries Energy Environ. Sci. 2016 9 663 670 10.1039/C5EE03404C 

  19. 19. Liu Z Pulletikurthi G Lahiri A Cui T Endres F Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications Dalton Trans. 2016 45 8089 8098 10.1039/C6DT00969G 27080261 

  20. 20. Xu M Ivey D Xie Z Qu W Rechargeable zn-air batteries: Progress in electrolyte development and cell configuration advancement J. Power Sources 2015 283 358 371 10.1016/j.jpowsour.2015.02.114 

  21. 21. Huot JY The effects of silicate ion on the corrosion of zinc powder in alkaline solutions J. Appl. Electrochem. 1992 22 443 447 10.1007/BF01077547 

  22. 22. Yang H Cao Y Ai X Xiao L Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives J. Power Sources 2004 128 97 101 10.1016/j.jpowsour.2003.09.050 

  23. 23. Amaral L Cardoso DSP Šljukić B Santos DMF Sequeira CAC Room temperature ionic liquids as electrolyte additives for the her in alkaline media J. Electrochem. Soc. 2017 164 F427 F432 10.1149/2.0011706jes 

  24. 24. Lee J Hwang B Park M-S Kim K Improved reversibility of zn anodes for rechargeable zn-air batteries by using alkoxide and acetate ions Electrochim. Acta. 2016 199 164 171 10.1016/j.electacta.2016.03.148 

  25. 25. Krezel A Maret W The biological inorganic chemistry of zinc ions Arch. Biochem. Biophys. 2016 611 3 19 10.1016/j.abb.2016.04.010 27117234 

  26. 26. Julke F Rodríguez Yáñez J Saborío-González M Evaluation of various steel types for the evolution of hydrogen in KOH Tecnologia en Marcha 2014 27 14 21 10.18845/tm.v27i2.1803 

  27. 27. Cai M Park S Spectroelectrochemical studies on dissolution and passivation of zinc electrodes in alkaline solutions J. Electrochem. Soc. 1996 143 2125 2131 10.1149/1.1836970 

  28. 28. Hassan HH Perchlorate and oxygen reduction during zn corrosion in a neutral medium Electrochim. Acta 2006 51 5966 5972 10.1016/j.electacta.2006.03.065 

  29. 29. Msayib KJ Watt CIF Ion pairing and reactivity of alkali metal alkoxides Chem. Soc. Rev. 1992 21 237 243 10.1039/cs9922100237 

  30. 30. Liu W Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires Nat. Energy 2017 2 17035 n/a 10.1038/nenergy.2017.35 

  31. 31. Yu X Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett. 2018 3 237 244 10.1021/acsenergylett.7b01103 

  32. 32. Sunu WG Bennion DN Transient and failure analyses of the porous zinc electrode: Ii. experimental J. Electrochem. Soc. 1980 127 2017 2025 10.1149/1.2130055 

  33. 33. Stamm J Varzi A Latz A Horstmann B Modeling nucleation and growth of zinc oxide during discharge of primary zinc-air batteries J. Power Sources 2017 360 136 149 10.1016/j.jpowsour.2017.05.073 

  34. 34. Chang Y Prentice G A model for the anodic dissolution of zinc in alkaline electrolyte: Kinetics of initial dissolution J. Electrochem. Soc. 1984 131 1465 1468 10.1149/1.2115875 

  35. 35. Prentice G Chang Y Shan X A model for the passivation of the zinc electrode in alkaline electrolyte J. Electrochem. Soc. 1991 138 890 894 10.1149/1.2085742 

  36. 36. Bockris JO Nagy Z Damjanovic A On the deposition and dissolution of zinc in alkaline solutions J. Electrochem. Soc. 1972 119 285 295 10.1149/1.2404188 

  37. 37. Ejaz A The effects of hydrogen on anodic dissolution and passivation of iron in alkaline solutions Corros. Sci. 2015 101 165 181 10.1016/j.corsci.2015.09.013 

  38. 38. Banjade DR Porter SD McMullan BM Harb JN Hydrogen evolution during the corrosion of galvanically coupled magnesium J. Electrochem. Soc. 2016 163 C116 C123 10.1149/2.0711603jes 

  39. 39. Shinagawa T Garcia-Esparza AT Takanabe K Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion Sci. Rep. 2015 5 163 10.1038/srep13801 

  40. 40. Masri MN Nazeri MFM Ng CY Mohamad AA Tapioca binder for porous zinc anodes electrode in zinc-air batteries Journal of King Saud University–Engineering Sciences 2015 27 217 224 10.1016/j.jksues.2013.06.001 

  41. 41. Joseph, P., Denis, C. &Rodney, M. Button cell batteries: silver oxdie-zinc and zinc-air systems. In Reddy, T. B. (ed.) Linden’s Handbook of Batteries s, chap. 13, 4 edn (McGraw-Hill Companies, Inc., New York, 2011). 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로