$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Molecular signatures of transgenerational response to ocean acidification in a species of reef fish

Nature climate change, v.6 no.11, 2016년, pp.1014 - 1018  

Schunter, Celia (KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering and Division of Applied Mathematics and ) ,  Welch, Megan J. (Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia) ,  Ryu, Taewoo (ARC Centre of Excellence for Coral Reef Studies and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland ) ,  Zhang, Huoming (4811, Australia) ,  Berumen, Michael L. (KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering and Division of Applied Mathematics and ) ,  Nilsson, Göran E. (Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia) ,  Munday, Philip L. (APEC Climate Center, Busan ) ,  Ravasi, Timothy (48058, South Korea)

Abstract AI-Helper 아이콘AI-Helper

The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt(1,2). Recent studies show that the behaviour of reef fishes is impaired at projected CO2 levels(3,4); however, individual variation exists that might promote adaptation. Here, we show a clear signature of...

참고문헌 (31)

  1. Trends Ecol. Evol. JM Sunday 29 117 2014 10.1016/j.tree.2013.11.001 Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117-125 (2014). 

  2. Proc. Natl Acad. Sci. USA MH Pespeni 110 6937 2013 10.1073/pnas.1220673110 Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937-6942 (2013). 

  3. Nature Clim. Change PL Munday 4 487 2014 10.1038/nclimate2195 Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Clim. Change 4, 487-492 (2014). 

  4. Proc. Natl Acad. Sci. USA PL Munday 107 12930 2010 10.1073/pnas.1004519107 Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930-12934 (2010). 

  5. Annu. Rev. Mar. Sci. SC Doney 1 169 2009 10.1146/annurev.marine.010908.163834 Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169-192 (2009). 

  6. Glob. Change Biol. I Nagelkerken 22 974 2016 10.1111/gcb.13167 Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob. Change Biol. 22, 974-989 (2016). 

  7. Mar. Ecol. Prog. Ser. J Clements 536 259 2015 10.3354/meps11426 Clements, J. & Hunt, H. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser. 536, 259-279 (2015). 

  8. Glob. Change Biol. DL Dixson 21 1454 2015 10.1111/gcb.12678 Dixson, D. L., Jennings, A. R., Atema, J. & Munday, P. L. Odor tracking in sharks is reduced under future ocean acidification conditions. Glob. Change Biol. 21, 1454-1462 (2015). 

  9. Conserv. Physiol. F Lai 3 cov018 2015 10.1093/conphys/cov018 Lai, F., Jutfelt, F. & Nilsson, G. E. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv. Physiol. 3, cov018 (2015). 

  10. Nature Clim. Change M Ou 5 950 2015 10.1038/nclimate2694 Ou, M. et al. Responses of pink salmon to CO2-induced aquatic acidification. Nature Clim. Change 5, 950-955 (2015). 

  11. Behav. Process. TH Holmes 83 299 2010 10.1016/j.beproc.2010.01.013 Holmes, T. H. & McCormick, M. I. Smell, learn and live: the role of chemical alarm cues in predator learning during early life history in a marine fish. Behav. Process. 83, 299-305 (2010). 

  12. Nature Clim. Change MJ Welch 4 1086 2014 10.1038/nclimate2400 Welch, M. J., Watson, S.-A., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nature Clim. Change 4, 1086-1089 (2014). 

  13. Glob. Change Biol. MCO Ferrari 17 2980 2011 10.1111/j.1365-2486.2011.02439.x Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980-2986 (2011). 

  14. Glob. Change Biol. DP Chivers 20 515 2014 10.1111/gcb.12291 Chivers, D. P. et al. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob. Change Biol. 20, 515-522 (2014). 

  15. Ocean Acidif. PL Munday 1 1 2012 10.2478/oac-2012-0001 Munday, P. L. et al. Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidif. 1, 1-5 (2012). 

  16. Am. J. Physiol. Regul. Integr. Comp. Physiol. RM Heuer 307 R1061 2014 10.1152/ajpregu.00064.2014 Heuer, R. M. & Grosell, M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1061-R1084 (2014). 

  17. Nature Clim. Change GE Nilsson 2 201 2012 10.1038/nclimate1352 Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Clim. Change 2, 201-204 (2012). 

  18. J. Comp. Physiol. B S Polakof 182 1015 2012 10.1007/s00360-012-0658-7 Polakof, S., Panserat, S., Soengas, J. L. & Moon, T. W. Glucose metabolism in fish: a review. J. Comp. Physiol. B 182, 1015-1045 (2012). 

  19. Cancer Res. Y Li 75 1191 2015 10.1158/0008-5472.CAN-14-2615 Li, Y. et al. Upregulation of cytosolic phosphoenolpyruvate carboxykinase is a critical metabolic event in melanoma cells that repopulate tumors. Cancer Res. 75, 1191-1196 (2015). 

  20. Environ. Toxicol. Chem. L Villeneuve 28 1767 2009 10.1897/08-653.1 Villeneuve, L. et al. Altered gene expression in the brain and ovaries of zebrafish (Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis and hypothesis generation. Environ. Toxicol. Chem. 28, 1767-1782 (2009). 

  21. Nucleic Acids Res. SW Harshman 41 9593 2013 10.1093/nar/gkt700 Harshman, S. W., Young, N. L., Parthun, M. R. & Freitas, M. A. H1 histones: current perspectives and challenges. Nucleic Acids Res. 41, 9593-9609 (2013). 

  22. Nature Rev. Cancer S Kim 11 708 2011 10.1038/nrc3124 Kim, S., You, S. & Hwang, D. Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nature Rev. Cancer 11, 708-718 (2011). 

  23. Annu. Rev. Genet. T Pan 47 121 2013 10.1146/annurev-genet-111212-133522 Pan, T. Adaptive translation as a mechanism of stress response and adaptation. Annu. Rev. Genet. 47, 121-137 (2013). 

  24. J. Exp. Mar. Biol. Ecol. AEV Haschemeyer 87 191 1985 10.1016/0022-0981(85)90090-5 Haschemeyer, A. E. V. Multiple aminoacyl-tRNA synthetases (translases) in temperature acclimation of eurythermal fish. J. Exp. Mar. Biol. Ecol. 87, 191-198 (1985). 

  25. Mar. Ecol. Prog. Ser. A Ishimatsu 373 295 2008 10.3354/meps07823 Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295-302 (2008). 

  26. Gen. Comp. Endocrinol. RJ Balment 147 9 2006 10.1016/j.ygcen.2005.12.022 Balment, R. J., Lu, W., Weybourne, E. & Warne, J. M. Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. Gen. Comp. Endocrinol. 147, 9-16 (2006). 

  27. J. Physiol. AV Dmitriev 522 77 2000 10.1111/j.1469-7793.2000.0077m.x Dmitriev, A. V. & Mangel, S. C. A circadian clock regulates the pH of the fish retina. J. Physiol. 522, 77-82 (2000). 

  28. J. Exp. Mar. Biol. Ecol. MS Peterson 121 73 1988 10.1016/0022-0981(88)90024-X Peterson, M. S. & Gilmore, R. G. Hematocrit, osmolality, and ion concentration in fishes: consideration of circadian patterns in the experimental design. J. Exp. Mar. Biol. Ecol. 121, 73-78 (1988). 

  29. Cell JC Dunlap 96 271 1999 10.1016/S0092-8674(00)80566-8 Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271-290 (1999). 

  30. Nature Rev. Mol. Cell Biol. EE Zhang 11 764 2010 10.1038/nrm2995 Zhang, E. E. & Kay, S. A. Clocks not winding down: unravelling circadian networks. Nature Rev. Mol. Cell Biol. 11, 764-776 (2010). 

  31. J. Exp. Biol. MA López-Patiño 214 928 2011 10.1242/jeb.051516 López-Patiño, M. A., Rodríguez-Illamola, A., Gesto, M., Soengas, J. L. & Míguez, J. M. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities. J. Exp. Biol. 214, 928-936 (2011). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로