$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Global Proteome Profiling of a Marine Copepod and the Mitigating Effect of Ocean Acidification on Mercury Toxicity after Multigenerational Exposure

Environmental science & technology, v.51 no.10, 2017년, pp.5820 - 5831  

Wang, Minghua (Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419,) ,  Lee, Jae-Seong ,  Li, Yan

Abstract AI-Helper 아이콘AI-Helper

Previously, we found that ocean acidification (OA) mitigates mercury (Hg) toxicity to marine copepod Tigriopus japonicus under multigenerational exposure (four generations, F0-F3). To determine the response mechanisms of T. japonicus against long-term exposure to OA and Hg pollution, we investigated...

참고문헌 (64)

  1. Science Siegenthaler U. 1313 310 5752 2005 10.1126/science.1120130 

  2. Brewer, Peter G.. A changing ocean seen with clarity. Proceedings of the National Academy of Sciences of the United States of America, vol.106, no.30, 12213-12214.

  3. Hoegh-Guldberg, Ove, Bruno, John F.. The Impact of Climate Change on the World’s Marine Ecosystems. Science, vol.328, no.5985, 1523-1528.

  4. Caldeira, Ken, Wickett, Michael E.. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of geophysical research : JGR. C : Oceans, vol.110, no.c9, 2004JC002671-.

  5. Feely, Richard A., Sabine, Christopher L., Hernandez-Ayon, J. Martin, Ianson, Debby, Hales, Burke. Evidence for Upwelling of Corrosive "Acidified" Water onto the Continental Shelf. Science, vol.320, no.5882, 1490-1492.

  6. Wootton, J. Timothy, Pfister, Catherine A., Forester, James D.. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences of the United States of America, vol.105, no.48, 18848-18853.

  7. Zhai, WeiDong, Zhao, HuaDe, Zheng, Nan, Xu, Yi. Coastal acidification in summer bottom oxygen-depleted waters in northwestern-northern Bohai Sea from June to August in 2011. Chinese science bulletin = 科學通報 (英文版), vol.57, no.9, 1062-1068.

  8. Melzner, F., Gutowska, M. A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M. C., Bleich, M., Pörtner, H.-O.. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?. Biogeosciences : BG, vol.6, no.10, 2313-2331.

  9. Langdon, Chris, Takahashi, Taro, Sweeney, Colm, Chipman, Dave, Goddard, John, Marubini, Francesca, Aceves, Heather, Barnett, Heidi, Atkinson, Marlin J.. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global biogeochemical cycles, vol.14, no.2, 639-654.

  10. Lannig, Gisela, Eilers, Silke, Pörtner, Hans O., Sokolova, Inna M., Bock, Christian. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas —Changes in Metabolic Pathways and Thermal Response. Marine drugs, vol.8, no.8, 2318-2339.

  11. Talmage, Stephanie C., Gobler, Christopher J.. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.40, 17246-17251.

  12. Kurihara, Haruko, Shimode, Shinji, Shirayama, Yoshihisa. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Marine pollution bulletin, vol.49, no.9, 721-727.

  13. Havenhand, J.N., Buttler, F.R., Thorndyke, M.C., Williamson, J.E.. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current biology : CB, vol.18, no.15, R651-R652.

  14. Gao, X., Zhou, F., Chen, C.T.A.. Pollution status of the Bohai Sea: An overview of the environmental quality assessment related trace metals. Environment international, vol.62, 12-30.

  15. Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z., Liu, B.. Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry, vol.24, no.9, 1702-1711.

  16. Castoldi, Anna F, Coccini, Teresa, Ceccatelli, Sandra, Manzo, Luigi. Neurotoxicity and molecular effects of methylmercury. Brain research bulletin, vol.55, no.2, 197-203.

  17. Wang, Yuyu, Wang, Dazhi, Lin, Lin, Wang, Minghua. Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury. Chemosphere, vol.119, 1126-1133.

  18. Xu, X., Shi, L., Wang, M.. Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario. Environmental pollution, vol.218, 1287-1297.

  19. Raisuddin, S., Kwok, K.W.H., Leung, K.M.Y., Schlenk, D., Lee, J.S.. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquatic toxicology, vol.83, no.3, 161-173.

  20. Li, H., Shi, L., Wang, D., Wang, M.. Impacts of mercury exposure on life history traits of Tigriopus japonicus: Multigeneration effects and recovery from pollution. Aquatic toxicology, vol.166, 42-49.

  21. Li, Wei, Han, Guodong, Dong, Yunwei, Ishimatsu, Atsushi, Russell, Bayden D., Gao, Kunshan. Combined effects of short-term ocean acidification and heat shock in a benthic copepod Tigriopus japonicus Mori. Marine biology, vol.162, no.9, 1901-1912.

  22. Li, Yan, Wang, Wen-Xiong, Wang, Minghua. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification. Scientific reports, vol.7, 324-.

  23. Shi, Wei, Zhao, Xinguo, Han, Yu, Che, Zhumei, Chai, Xueliang, Liu, Guangxu. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety. Scientific reports, vol.6, 20197-.

  24. Ivanina, Anna V., Hawkins, Chelsea, Sokolova, Inna M.. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria. Fish & shellfish immunology, vol.37, no.2, 299-312.

  25. Pascal, P.Y., Fleeger, J.W., Galvez, F., Carman, K.R.. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Marine pollution bulletin, vol.60, no.12, 2201-2208.

  26. Campbell, Anna L., Mangan, Stephanie, Ellis, Robert P., Lewis, Ceri. Ocean Acidification Increases Copper Toxicity to the Early Life History Stages of the Polychaete Arenicola marina in Artificial Seawater. Environmental science & technology, vol.48, no.16, 9745-9753.

  27. Richards, Russell, Chaloupka, Milani, Sanò, Marcello, Tomlinson, Rodger. Modelling the effects of ‘coastal’ acidification on copper speciation. Ecological modelling, vol.222, no.19, 3559-3567.

  28. Millero, Frank, Woosley, Ryan, DiTrolio, Benjamin, Waters, Jason. Effect of Ocean Acidification on the Speciation of Metals in Seawater. Oceanography : the official magazine of the Oceanography Society, vol.22, no.4, 72-85.

  29. ALEX MERRICK, B.. Toxicoproteomics in Liver Injury and Inflammation. Annals of the New York Academy of Sciences, vol.1076, no.1, 707-717.

  30. Thompson, E. L., O'Connor, W., Parker, L., Ross, P., Raftos, D. A. Differential proteomic responses of selectively bred and wild‐type Sydney rock oyster populations exposed to elevated CO2. Molecular ecology, vol.24, no.6, 1248-1262.

  31. Dineshram, R., Q., Quan, Sharma, Rakesh, Chandramouli, Kondethimmanahalli, Yalamanchili, Hari Krishna, Chu, Ivan, Thiyagarajan, Vengatesen. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification. Proteomics, vol.15, no.23, 4120-4134.

  32. Dineshram, Ramadoss, Chandramouli, Kondethimmanahalli, Ko, Ginger Wai Kuen, Zhang, Huoming, Qian, Pei‐Yuan, Ravasi, Timothy, Thiyagarajan, Vengatesen. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors. Global change biology, vol.22, no.6, 2054-2068.

  33. Caldeira, Ken, Wickett, Michael E.. Oceanography: Anthropogenic carbon and ocean pH. Nature, vol.425, no.6956, 365-365.

  34. Kim, H.S., Lee, B.Y., Won, E.J., Han, J., Hwang, D.S., Park, H.G., Lee, J.S.. Identification of xenobiotic biodegradation and metabolism-related genes in the copepod Tigriopus japonicus whole transcriptome analysis. Marine genomics, vol.24, no.3, 207-208.

  35. Wang, Minghua, Jeong, Chang-Bum, Li, Yan, Lee, Jae-Seong. Different transcriptomic responses of two marine copepods, Tigriopus japonicus and Pseudodiaptomus annandalei , to a low dose of mercury chloride (HgCl 2 ). Aquatic toxicology, vol.187, 124-131.

  36. Ren, Yan, Hao, Piliang, Dutta, Bamaprasad, Cheow, Esther Sok Hwee, Sim, Kae Hwan, Gan, Chee Sian, Lim, Sai Kiang, Sze, Siu Kwan. Hypoxia Modulates A431 Cellular Pathways Association to Tumor Radioresistance and Enhanced Migration Revealed by Comprehensive Proteomic and Functional Studies. Molecular & cellular proteomics : MCP, vol.12, no.2, 485-498.

  37. Tomanek, L.. Proteomics to study adaptations in marine organisms to environmental stress. Journal of proteomics, vol.105, 92-106.

  38. Dineshram, R., Wong, K.K.W., Xiao, S., Yu, Z., Qian, P.Y., Thiyagarajan, V.. Analysis of Pacific oyster larval proteome and its response to high-CO2. Marine pollution bulletin, vol.64, no.10, 2160-2167.

  39. Wong, K.K.W., Lane, A.C., Leung, P.T.Y., Thiyagarajan, V.. Response of larval barnacle proteome to CO2-driven seawater acidification. Comparative biochemistry and physiology. Part D, Genomics & proteomics, vol.6, no.3, 310-321.

  40. Li, W., Gao, K.. A marine secondary producer respires and feeds more in a high CO2 ocean. Marine pollution bulletin, vol.64, no.4, 699-703.

  41. Pedersen, Sindre A., Håkedal, Ole Jacob, Salaberria, Iurgi, Tagliati, Alice, Gustavson, Liv Marie, Jenssen, Bjørn Munro, Olsen, Anders J., Altin, Dag. Multigenerational Exposure to Ocean Acidification during Food Limitation Reveals Consequences for Copepod Scope for Growth and Vital Rates. Environmental science & technology, vol.48, no.20, 12275-12284.

  42. Nilsson, Göran E., Dixson, Danielle L., Domenici, Paolo, McCormick, Mark I., Sørensen, Christina, Watson, Sue-Ann, Munday, Philip L.. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature climate change, vol.2, no.3, 201-204.

  43. Hamilton, Trevor James, Holcombe, Adam, Tresguerres, Martin. CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning. Proceedings, Biological sciences, vol.281, no.1775, 20132509-20132509.

  44. Watson, Sue-Ann, Lefevre, Sjannie, McCormick, Mark I., Domenici, Paolo, Nilsson, Göran E., Munday, Philip L.. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proceedings, Biological sciences, vol.281, no.1774, 20132377-20132377.

  45. Bormann, J, Hamill, O P, Sakmann, B. Mechanism of anion permeation through channels gated by glycine and gamma‐aminobutyric acid in mouse cultured spinal neurones.. The Journal of physiology, vol.385, 243-286.

  46. Ishimatsu, A, Hayashi, M, Kikkawa, T. Fishes in high-CO2, acidified oceans. Marine ecology progress series, vol.373, 295-302.

  47. Akerman, C.J., Cline, H.T.. Refining the roles of GABAergic signaling during neural circuit formation. Trends in neurosciences, vol.30, no.8, 382-389.

  48. Tsang, Shui-Ying, Ng, Siu-Kin, Xu, Zhiwen, Xue, Hong. The Evolution of GABAA Receptor-Like Genes. Molecular biology and evolution, vol.24, no.2, 599-610.

  49. Harrison, Pauline M., Arosio, Paolo. The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et biophysica acta, Bioenergetics, vol.1275, no.3, 161-203.

  50. Sun, Y., Zhang, Y., Fu, X., Zhang, R., Zou, J., Wang, S., Hu, X., Zhang, L., Bao, Z.. Identification of two secreted ferritin subunits involved in immune defense of Yesso scallop Patinopecten yessoensis. Fish & shellfish immunology, vol.37, no.1, 53-59.

  51. Aguilera, Victor M., Vargas, Cristian A., Lardies, Marco A., Poupin, María J.. Adaptive variability to low‐pH river discharges in Acartia tonsa and stress responses to high PCO2 conditions. Marine ecology, vol.37, no.1, 215-226.

  52. Lundeen, Katherine A., Sun, Binggang, Karlsson, Lars, Fourie, Anne M.. Leukotriene B4 Receptors BLT1 and BLT2: Expression and Function in Human and Murine Mast Cells. The journal of immunology : official journal of the American Association of Immunologists, vol.177, no.5, 3439-3447.

  53. Couto, N., Wood, J., Barber, J.. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free radical biology & medicine, vol.95, 27-42.

  54. J. Biol. Chem. De Gasperi R. 9706 267 14 1992 10.1016/S0021-9258(19)50148-X 

  55. Robinson, A.J., Crawley, A.C., Hopwood, J.J.. Over-expression of human lysosomal α-mannosidase in mouse embryonic stem cells. Molecular genetics and metabolism, vol.85, no.3, 203-212.

  56. Conus, S., Simon, H.U.. Cathepsins: Key modulators of cell death and inflammatory responses. Biochemical pharmacology, vol.76, no.11, 1374-1382.

  57. Saja, S., Buff, H., Smith, A.C., Williams, T.S., Korey, C.A.. Identifying cellular pathways modulated by Drosophila palmitoyl-protein thioesterase 1 function. Neurobiology of disease, vol.40, no.1, 135-145.

  58. Dearborn, J.T., Ramachandran, S., Shyng, C., Lu, J.Y., Thornton, J., Hofmann, S.L., Sands, M.S.. Histochemical localization of palmitoyl protein thioesterase-1 activity. Molecular genetics and metabolism, vol.117, no.2, 210-216.

  59. Mattingly, K.S., Beaty, B.J., Mackie, R.S., McGaw, M., Carlson, J.O., Rayms-Keller, A.. Molecular cloning and characterization of a metal responsive Chironomus tentans alpha-tubulin cDNA. Aquatic toxicology, vol.54, no.3, 249-260.

  60. Mireji, P.O., Keating, J., Hassanali, A., Impoinvil, D.E., Mbogo, C.M., Muturi, M.N., Nyambaka, H., Kenya, E.U., Githure, J.I., Beier, J.C.. Expression of metallothionein and α-tubulin in heavy metal-tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae). Ecotoxicology and environmental safety, vol.73, no.1, 46-50.

  61. Klionsky, Daniel J., Emr, Scott D.. Autophagy as a Regulated Pathway of Cellular Degradation. Science, vol.290, no.5497, 1717-1721.

  62. Reviews of Environmental Contamination and Toxicology Bargagli R. 129 166 2000 

  63. Chiarelli, Roberto, Martino, Chiara, Agnello, Maria, Bosco, Liana, Roccheri, Maria Carmela. Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium. Cell stress & chaperones, vol.21, no.1, 19-27.

  64. Moore, Michael N., Icarus Allen, J., McVeigh, Allan. Environmental prognostics: An integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. Marine environmental research, vol.61, no.3, 278-304.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로