$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Synthesis and pharmacological evaluation of glycosides of resveratrol, pterostilbene, and piceatannol

Annals of the New York Academy of Sciences, v.1348 no.1, 2015년, pp.141 - 149  

Shimoda, Kei (Department of Chemistry, Faculty of Medicine, Oita University, Oita, Japan) ,  Kubota, Naoji (Department of Chemistry, Faculty of Medicine, Oita University, Oita, Japan) ,  Uesugi, Daisuke (Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan) ,  Hamada, Hatsuyuki (National Institute of Fitness and Sports, Kanoya, Japan) ,  Tanigawa, Masato (Department of Physics, Faculty of Medicine, Oita University, Oita, Japan) ,  Hamada, Hiroki (Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan)

Abstract AI-Helper 아이콘AI-Helper

To enhance their water solubility and pharmacological activities, the stilbenes resveratrol, pterostilbene, and piceatannol were glycosylated to their monoglucosides (β‐glucosides) and diglycosides (β‐maltosides) by cultured cells and cyclodextrin glucanotransferase (CGTase). C...

주제어

참고문헌 (50)

  1. Jubilee , R.S. , C.A. Marlene & A.O. Catherine . 2003 . Resveratrol: a candidate nutritional substance for prostate cancer prevention . J. Nutr. 133 : 2440 – 2443 . 

  2. Guo , X. et?al . 2002 . Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes . J. Nutr. 132 : 2076 – 2081 . 

  3. Baur , J.A. et?al . 2006 . Resveratrol improves health and survival of mice on a high‐calorie diet . Nature 16 : 337 – 342 . 

  4. Miller , R.A. et?al . 2011 . Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice . J. Gerontol. A Biol. Sci. Med. Sci. 66 : 191 – 201 . 

  5. Remsberg , C.M. , R.L. Good & N.M. Davies . 2010 . Ingredient consistency of commercially available polyphenol and tocopherol nutraceuticals . Pharmaceutics 2 : 50 – 60 . 

  6. Wang , Y. et?al . 2012 . Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto‐protective autophagy in breast cancer cells . Am. J. Transl. Res. 4 : 44 – 51 . 

  7. McCormack , D. & D. McFadden . 2013 . A review of pterostilbene antioxidant activity and disease modification . Oxid. Med. Cell Longev. 1 – 15 . 

  8. Rimando , A.M. et?al . 2004 . Resveratrol, pterostilbene, and piceatannol in vaccinium berries . J. Agric. Food Chem. 28 : 4713 – 4719 . 

  9. Niles , R.M. et?al . 2006 . Resveratrol is rapidly metabolized in athymic (Nu/Nu) mice and does not inhibit human melanoma xenograft tumor growth . J. Nutr. 136 : 2542 – 2548 . 

  10. Son , P.S. et?al . 2010 . Piceatannol, a catechol‐type polyphenol, inhibits phorbol ester‐induced NF‐{kappa}B activation and cyclooxygenase‐2 expression in human breast epithelial cells: cysteine 179 of IKK{beta} as a potential target . Carcinogenesis 31 : 1442 – 1449 . 

  11. Kaminaga , Y. et?al . 2003 . Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus . FEBS Lett . 555 : 311 – 316 . 

  12. Furuya , T. et?al . 1989 . Biotransformation of 2‐phenylpropionic acid in root culture of Panax ginseng . Phytochemistry 28 : 483 – 487 . 

  13. Kamel , S. et?al . 1992 . Glucosylation of butyric acid by cell suspension culture of Nicotiana plumbaginifolia . Phytochemistry 31 : 1581 – 1583 . 

  14. Morand , C. et?al . 2000 . Quercetin 3‐O‐beta‐glucoside is better absorbed than other quercetin forms and is not present in rat plasma . Free Rad. Research 33 : 667 – 676 . 

  15. Kita , M. et?al . 2000 . Molecular cloning and characterization of a novel gene encoding limonoid UDP‐glucosyltransferase in Citrus . FEBS Lett . 469 : 173 – 178 . 

  16. Shimoda , K. et?al . 2006 . Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana . Phytochemistry 67 : 2256 – 2261 . 

  17. Takenaka , S. et?al . 2006 . Microbial transformation of aniline derivatives: regioselective biotransformation and detoxification of 2‐phenylenediamine by Bacillus cereus strain PDa‐1 . J. Biosci. Bioeng. 102 : 21 – 27 . 

  18. Yang , G. et?al . 2008 . Biotransformation of beta‐amyrin acetate by Rhodobacter sphaeroides. J. Biosci. Bioeng. 105 : 558 – 561 . 

  19. Imai , H. et?al . 2012 . Glycosylation of trans‐resveratrol by plant‐cultured cells . Biosci. Biotechnol. Biochem. 8 : 1552 – 1554 . 

  20. Pilgrim , H. 1970 . Studies on glycoside formation in plant tissue culture . Pharmazie 25 : 568 . 

  21. Furuya , T. et?al . 1997 . Biotransformation of β‐thujaplicin by cultured cells of Eucalyptus perriniana . Phytochemistry 46 : 1355 – 1358 . 

  22. Nakajima , N. et?al . 2004 . Glycosylation of bisphenol A by tobacco BY‐2 cells . Phytochemistry 65 : 1383 – 1387 . 

  23. Shimoda , K. et?al . 2009 . Glycosylation of sesamol by cultured plant cells . Phytochemistry 70 : 207 – 210 . 

  24. Shimoda , K. et?al . 2007 . Synthesis of curcumin β‐maltooligosaccharides through biocatalytic glycosylation with Strophanthus gratus cell culture and cyclodextrin glucanotransferase . Tetrahedron Lett . 48 : 4029 – 4032 . 

  25. Orsini , F. et?al . 1997 . Synthesis of biologically active polyphenolic glycosides (combretastatin and resveratrol series) . Carbohydr. Res. 301 : 95 – 109 . 

  26. Hamada , H. et?al . 2003 . One‐step glucosylation of capsaicinoids by cultured cells of Phytolacca americana . Plant Biotechnol . 20 : 253 – 255 . 

  27. Sato , D. et?al . 2014 . Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti‐oxidant, anti‐allergic, and neuroprotective activities . Biosci. Biotechnol. Biochem. 78 : 1123 – 1128 . 

  28. Ozaki , S. et?al . 2012 . Regioselective glucosidation of trans ‐resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana . Biotechnol. Lett. 34 : 475 – 481 . 

  29. Lewinsohn , E. et?al . 1986 . Glucosylation of exogenous flavanones by grapefruit ( Citrus paradisi ) cell cultures . Phytochemistry 25 : 2531 – 2535 . 

  30. Weis , M. et?al . 2006 . Regioselective glucosylation of aromatic compounds: screening of a recombinant glycosyltransferase library to identify biocatalysts . Angew. Chem. Int. Ed. 45 : 3534 – 3538 . 

  31. Ojima , T. et?al . 2012 . α‐Glucosylated 6‐gingerol: chemoenzymatic synthesis using α‐glucosidase from Halomonas sp. H11, and its physical properties . Carbohydr. Res. 354 : 59 – 64 . 

  32. McCarter , J.D. & S.G. Withers . 1994 . Mechanisms of enzymatic glycoside hydrolysis . Curr. Opin. Struct. Biol. 4 : 885 – 892 . 

  33. Konishi , Y. & K. Shindo . 1997 . Production of nigerose, nigerosylglucose, and nigerosylmaltose by Acremonium sp. S4G13 . Biosci. Biotechnol. Biochem. 61 : 439 – 442 . 

  34. Do , H. et?al . 2002 . Enzymatic synthesis of l‐menthyl α‐maltoside and l‐menthyl α‐maltooligosides from l‐menthyl α‐glucoside by cyclodextrin glucanotransferase . J. Biosci. Bioeng. 94 : 119 – 123 . 

  35. Park , H. et?al . 2012 . Bioconversion of piceid to piceid glucoside using amylosucrase from Alteromonas macleodii deep ecotype . J. Microbial. Biotechnol. 22 : 1698 – 1704 . 

  36. Park , S.H. et?al . 2014 . Delineation of the role of glycosylation in the cytotoxic properties of quercetin using novel assays in living vertebrates . J. Nat. Prod. 77 : 2389 – 2396 . 

  37. Iwadate , T. et?al . 2014 . Chemical synthesis and tyrosinase inhibitory activity of rhododendrol glycosides . Bioorg. Med. Chem. Lett. 24 : 122 – 125 . 

  38. Zeng , Y.B. et?al . 2014 . Synthesis and anti‐cancer activity of a glycosyl library of N‐acetylglucosamine‐bearing oleanolic acid . Mol. Divers. 18 : 13 – 23 . 

  39. Gu , B. , Y. Xu & S. He . 2013 . A new resveratrol trimer from the roots and stems of Vitis wenchowensis . Molecules 18 : 7486 – 7491 . 

  40. Khanduja , K.L. & A. Bhardwaj . 2003 . Stable free radical scavenging and antiperoxidative properties of resveratrol compared in vitro with some other bioflavonoids . Indian J. Biochem. Biophys. 40 : 416 – 422 . 

  41. Ko , Y.J. et?al . 2013 . Piceatannol inhibits mast cell‐mediated allergic inflammation . Int. J. Mol. Med. 31 : 951 – 958 . 

  42. Shimoda , K. et?al . 2008 . Synthesis of oligosaccharides of genistein and quercetin as potential anti‐inflammatory agents . Chem. Lett. 37 : 876 – 877 . 

  43. Shimoda , K. , M. Akagi & H. Hamada . 2009 . Production of β‐maltooligosaccharides of α‐ and δ‐tocopherols by Klebsiella pneumoniae and cyclodextrin glucanotransferase as anti‐allergic agents . Molecules 14 : 3106 – 3114 . 

  44. Tsuruga , T. et?al . 1991 . Biologically active constituents of Melaleuca leucadendron: inhibitors of induced histamine release from rat mast cells . Chem. Pharm. Bull. 39 : 3276 – 3278 . 

  45. Matsuda , H. et?al . 2001 . Study on anti‐Oketsu activity of rhubarb II. Anti‐allergic effects of stilbene components from Rhei undulati Rhizoma (dried rhizome of Rheum undulatum cultivated in Korea) . Biol. Pharm. Bull. 24 : 264 – 267 . 

  46. Rahman , A. et?al . 2005 . Bioactive constituents from Boswellia papyrifera . J. Nat. Prod. 68 : 189 – 193 . 

  47. Medina , A.E. 2011 . Therapeutic utility of phosphodiesterase type I inhibitors in neurological conditions . Front Neurosci. 5 : 1 – 5 . 

  48. Chung , J.H. 2012 . Metabolic benefits of inhibiting cAMP‐PDEs with resveratrol . Adipocyte 1 : 256 – 258 . 

  49. Park , S.J. et?al . 2012 . Resveratrol ameliorates aging‐related metabolic phenotypes by inhibiting cAMP phosphodiesterases . Cell 148 : 421 – 433 . 

  50. Joseph , J.A. et?al . 2008 . Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging . J. Agric. Food Chem. 56 : 10544 – 10551 . 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로