$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.113 no.46, 2016년, pp.12997 - 13002  

Muramatsu, Tomonari (RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan) ,  Takemoto, Chie ,  Kim, Yong-Tae (RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan) ,  Wang, Hongfei ,  Nishii, Wataru (RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan) ,  Terada, Takaho ,  Shirouzu, Mikako (RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan) ,  Yokoyama, Shigeyuki

Abstract AI-Helper 아이콘AI-Helper

The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) cleaves 11 sites in the polyproteins, including its own N- and C-terminal autoprocessing sites, by recognizing P4-P1 and P1'. In this study, we determined the crystal structure of 3CLpro with the C-terminal p...

주제어

참고문헌 (37)

  1. J Gen Virol Thiel V 2305 84 2003 10.1099/vir.0.19424-0 Mechanisms and enzymes involved in SARS coronavirus genome expression V Thiel, , Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84, 2305-2315 (2003). 

  2. Proc Natl Acad Sci USA Yang H 13190 100 2003 10.1073/pnas.1835675100 The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor H Yang, , The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci USA 100, 13190-13195 (2003). 

  3. Biochemistry Goetz DH 8744 46 2007 10.1021/bi0621415 Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus DH Goetz, , Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry 46, 8744-8752 (2007). 

  4. PLoS One Chuck C-P e13197 5 2010 10.1371/journal.pone.0013197 Profiling of substrate specificity of SARS-CoV 3CL C-P Chuck, , Profiling of substrate specificity of SARS-CoV 3CL. PLoS One 5, e13197 (2010). 

  5. Protein Cell Xia B 282 2 2011 10.1007/s13238-011-1034-1 Activation and maturation of SARS-CoV main protease B Xia, X Kang, Activation and maturation of SARS-CoV main protease. Protein Cell 2, 282-290 (2011). 

  6. J Mol Biol Xue X 965 366 2007 10.1016/j.jmb.2006.11.073 Production of authentic SARS-CoV M(pro) with enhanced activity: Application as a novel tag-cleavage endopeptidase for protein overproduction X Xue, , Production of authentic SARS-CoV M(pro) with enhanced activity: Application as a novel tag-cleavage endopeptidase for protein overproduction. J Mol Biol 366, 965-975 (2007). 

  7. J Biol Chem Chen S 554 283 2008 10.1074/jbc.M705240200 Mutation of Gly-11 on the dimer interface results in the complete crystallographic dimer dissociation of severe acute respiratory syndrome coronavirus 3C-like protease: Crystal structure with molecular dynamics simulations S Chen, , Mutation of Gly-11 on the dimer interface results in the complete crystallographic dimer dissociation of severe acute respiratory syndrome coronavirus 3C-like protease: Crystal structure with molecular dynamics simulations. J Biol Chem 283, 554-564 (2008a). 

  8. J Biochem Chen S 525 143 2008 10.1093/jb/mvm246 Residues on the dimer interface of SARS coronavirus 3C-like protease: Dimer stability characterization and enzyme catalytic activity analysis S Chen, , Residues on the dimer interface of SARS coronavirus 3C-like protease: Dimer stability characterization and enzyme catalytic activity analysis. J Biochem 143, 525-536 (2008b). 

  9. J Virol Shi J 4620 82 2008 10.1128/JVI.02680-07 Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease J Shi, J Sivaraman, J Song, Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease. J Virol 82, 4620-4629 (2008). 

  10. Virology Hu T 324 388 2009 10.1016/j.virol.2009.03.034 Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure T Hu, , Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure. Virology 388, 324-334 (2009). 

  11. Protein Cell Zhang S 371 1 2010 10.1007/s13238-010-0044-8 Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease S Zhang, , Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease. Protein Cell 1, 371-383 (2010). 

  12. J Biol Chem Li C 28134 285 2010 10.1074/jbc.M109.095851 Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase C Li, , Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase. J Biol Chem 285, 28134-28140 (2010). 

  13. J Biol Chem Hsu M-F 31257 280 2005 10.1074/jbc.M502577200 Mechanism of the maturation process of SARS-CoV 3CL protease M-F Hsu, , Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem 280, 31257-31266 (2005). 

  14. Acta Crystallogr D Biol Crystallogr Adams PD 213 66 2010 10.1107/S0907444909052925 PHENIX: a comprehensive Python-based system for macromolecular structure solution PD Adams, , PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221 (2010). 

  15. Nucleic Acids Res Schneider TD 6097 18 1990 10.1093/nar/18.20.6097 Sequence logos: A new way to display consensus sequences TD Schneider, RM Stephens, Sequence logos: A new way to display consensus sequences. Nucleic Acids Res 18, 6097-6100 (1990). 

  16. Genome Res Crooks GE 1188 14 2004 10.1101/gr.849004 WebLogo: A sequence logo generator GE Crooks, G Hon, J-M Chandonia, SE Brenner, WebLogo: A sequence logo generator. Genome Res 14, 1188-1190 (2004). 

  17. J Virol Xue X 2515 82 2008 10.1128/JVI.02114-07 Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design X Xue, , Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. J Virol 82, 2515-2527 (2008). 

  18. Protein Sci Chu L-HM 699 15 2006 10.1110/ps.052007306 Rapid peptide-based screening on the substrate specificity of severe acute respiratory syndrome (SARS) coronavirus 3C-like protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry L-HM Chu, W-Y Choy, S-N Tsai, Z Rao, S-M Ngai, Rapid peptide-based screening on the substrate specificity of severe acute respiratory syndrome (SARS) coronavirus 3C-like protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci 15, 699-709 (2006). 

  19. FEBS J Muramatsu T 2002 280 2013 10.1111/febs.12222 Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins T Muramatsu, , Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins. FEBS J 280, 2002-2013 (2013). 

  20. J Struct Funct Genomics Kigawa T 63 5 2004 10.1023/B:JSFG.0000029204.57846.7d Preparation of Escherichia coli cell extract for highly productive cell-free protein expression T Kigawa, , Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5, 63-68 (2004). 

  21. J Mol Biol Brandl M 357 307 2001 10.1006/jmbi.2000.4473 C-H...π-interactions in proteins M Brandl, MS Weiss, A Jabs, J Sühnel, R Hilgenfeld, C-H...π-interactions in proteins. J Mol Biol 307, 357-377 (2001). 

  22. J Virol Oostra M 12323 81 2007 10.1128/JVI.01506-07 Localization and membrane topology of coronavirus nonstructural protein 4: Involvement of the early secretory pathway in replication M Oostra, , Localization and membrane topology of coronavirus nonstructural protein 4: Involvement of the early secretory pathway in replication. J Virol 81, 12323-12336 (2007). 

  23. J Virol Oostra M 12392 82 2008 10.1128/JVI.01219-08 Topology and membrane anchoring of the coronavirus replication complex: Not all hydrophobic domains of nsp3 and nsp6 are membrane spanning M Oostra, , Topology and membrane anchoring of the coronavirus replication complex: Not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. J Virol 82, 12392-12405 (2008). 

  24. Methods Enzymol Otwinowski Z 307 276 1997 10.1016/S0076-6879(97)76066-X Processing of X-ray diffraction data collected in oscillation mode Z Otwinowski, W Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 (1997). 

  25. Acta Crystallogr D Biol Crystallogr Winn MD 235 67 2011 10.1107/S0907444910045749 Overview of the CCP4 suite and current developments MD Winn, , Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242 (2011). 

  26. Acta Crystallogr A Jones TA 110 47 1991 10.1107/S0108767390010224 Improved methods for building protein models in electron density maps and the location of errors in these models TA Jones, J-Y Zou, SW Cowan, M Kjeldgaard, Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47, 110-119 (1991). 

  27. Acta Crystallogr D Biol Crystallogr Brünger AT 905 54 1998 10.1107/S0907444998003254 Crystallography & NMR system: A new software suite for macromolecular structure determination AT Brünger, , Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-921 (1998). 

  28. Methods Enzymol Kleywegt GJ 525 277 1997 10.1016/S0076-6879(97)77029-0 Detecting folding motifs and similarities in protein structures GJ Kleywegt, TA Jones, Detecting folding motifs and similarities in protein structures. Methods Enzymol 277, 525-545 (1997). 

  29. Acta Crystallogr D Biol Crystallogr Kleywegt GJ 842 52 1996 10.1107/S0907444995016477 Use of non-crystallographic symmetry in protein structure refinement GJ Kleywegt, Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr 52, 842-857 (1996). 

  30. Acta Crystallogr A Kabsch W 922 32 1976 10.1107/S0567739476001873 Solution for the best rotation to relate two sets of vectors W Kabsch, Solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 32, 922-923 (1976). 

  31. Biopolymers Kabsch W 2577 22 1983 10.1002/bip.360221211 Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features W Kabsch, C Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637 (1983). 

  32. J Appl Cryst Laskowski RA 283 26 1993 10.1107/S0021889892009944 PROCHECK: A program to check the stereochemical quality of protein structures RA Laskowski, MW MacArthur, DS Moss, JM Thornton, PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283-291 (1993). 

  33. The PyMOL Molecular Graphics System DeLano WL 2002 WL DeLano The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA, 2002). 

  34. Protein Cell Chen S 59 1 2010 10.1007/s13238-010-0011-4 Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode S Chen, F Jonas, C Shen, R Hilgenfeld, Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein Cell 1, 59-74 (2010). 

  35. Biol Chem Ng NM 401 390 2009 10.1515/BC.2009.065 Subsite cooperativity in protease specificity NM Ng, RN Pike, SE Boyd, Subsite cooperativity in protease specificity. Biol Chem 390, 401-407 (2009). 

  36. Bioorg Med Chem Kontijevskis A 5229 17 2009 10.1016/j.bmc.2009.05.045 Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates A Kontijevskis, R Petrovska, S Yahorava, J Komorowski, JES Wikberg, Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates. Bioorg Med Chem 17, 5229-5237 (2009). 

  37. Protein Eng Wallace AC 127 8 1995 10.1093/protein/8.2.127 LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions AC Wallace, RA Laskowski, JM Thornton, LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-134 (1995). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로