$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High-Efficient Energy Harvester With Flexible Solar Panel for a Wearable Sensor Device

IEEE sensors journal, v.16 no.24, 2016년, pp.9021 - 9028  

Tran, Thang Viet ,  Chung, Wan-Young

Abstract AI-Helper 아이콘AI-Helper

This paper proposes an optimal energy harvester (OEH) that uses a flexible photovoltaic (FPV) module to prolong battery life for a wearable body sensor node under indoor and outdoor conditions. The proposed sensor node uses a Bluetooth low- energy module, which consumes low power to wirelessly commu...

참고문헌 (28)

  1. Leonov, V.. Thermoelectric Energy Harvesting of Human Body Heat for Wearable Sensors. IEEE sensors journal, vol.13, no.6, 2284-2291.

  2. Wahbah, Maisam, Alhawari, Mohammad, Mohammad, Baker, Saleh, Hani, Ismail, Mohammed. Characterization of Human Body-Based Thermal and Vibration Energy Harvesting for Wearable Devices. IEEE journal on emerging and selected topics in circuits and systems, vol.4, no.3, 354-363.

  3. Biomed Mater Eng IEEE-802.15.4-based low-power body sensor node with RF energy harvester tran 2014 24 3503 

  4. Hande, A., Polk, T., Walker, W., Bhatia, D.. Indoor solar energy harvesting for sensor network router nodes. Microprocessors and microsystems, vol.31, no.6, 420-432.

  5. 10.1109/IAPEC.2011.5779863 

  6. Salas, V., Olías, E., Barrado, A., Lázaro, A.. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.90, no.11, 1555-1578.

  7. Lopez-Lapena, O., Penella, M.T.. Low-power FOCV MPPT controller with automatic adjustment of the sample&hold. Electronics letters, vol.48, no.20, 1301-1303.

  8. Chini, A, Soci, F. Boost-converter-based solar harvester for low power applications. Electronics letters, vol.46, no.4, 296-298.

  9. Alippi, C., Galperti, C.. An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE transactions on circuits and systems. a publication of the IEEE Circuits and Systems Society. I, Regular papers, vol.55, no.6, 1742-1750.

  10. Revue Des Energies Renouvelables Maximum power point tracking using a fuzzy logic control scheme cheikh 2007 10 387 

  11. 2015 

  12. Dong-Wan Ryoo, Changseok Bae. Design of The Wearable Gadgets for Life-Log Services based on UTC. IEEE transactions on consumer electronics, vol.53, no.4, 1477-1482.

  13. 10.5772/2662 

  14. Mukhopadhyay, Subhas Chandra. Wearable Sensors for Human Activity Monitoring: A Review. IEEE sensors journal, vol.15, no.3, 1321-1330.

  15. Top 5 Energy Harvesting Options for Wearable Devices hess 2015 

  16. Paradiso, J.A., Starner, T.. Energy scavenging for mobile and wireless electronics. IEEE pervasive computing, vol.4, no.1, 18-27.

  17. IEEE MTT-S Int Microw Symp Dig (MTT) An autonomous wireless sensor node using a solar cell antenna for solar energy harvesting danesh 2011 1 

  18. Proc Electronic Goes Green Design of autonomous micro-solar powered energy harvesting system for self-powered batteries-less wireless sensor mote rahman 2012 1 

  19. 10.1109/ICSENS.2009.5398330 

  20. Wang Yun Toh, Yen Kheng Tan, Wee Song Koh, Siek, Liter. Autonomous Wearable Sensor Nodes With Flexible Energy Harvesting. IEEE sensors journal, vol.14, no.7, 2299-2306.

  21. Wearable Monitoring Systems Energy harvesting for self-powered wearable devices leonov 2010 27 

  22. Proc Environ Sci Fuzzy logic control approach of a maximum power point employing SEPIC converter for standalone photovoltaic system khateb 2012 10.1016/j.proenv.2013.02.068 17 529 

  23. J Electron Sci Technol A fuzzy logical MPPT control strategy for PMSG wind generation systems li 2013 11 72 

  24. El Khateb, Ahmad, Rahim, Nasrudin Abd, Selvaraj, Jeyraj, Uddin, Mohammad Nasir. Fuzzy-Logic-Controller-Based SEPIC Converter for Maximum Power Point Tracking. IEEE transactions on industry applications, vol.50, no.4, 2349-2358.

  25. Alajmi, B. N., Ahmed, K. H., Finney, S. J., Williams, B. W.. A Maximum Power Point Tracking Technique for Partially Shaded Photovoltaic Systems in Microgrids. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.60, no.4, 1596-1606.

  26. 2015 

  27. Thang Viet Tran, Wan-Young Chung. A Robust Algorithm for Real-Time Peak Detection of Photoplethysmograms Using a Personal Computer Mouse. IEEE sensors journal, vol.15, no.8, 4651-4659.

  28. 10.1109/ICIInfS.2012.6304830 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로