최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.6, 2016년, pp.36735 -
Ngo, Chi-Vinh (School of Mechanical Engineering, University of Ulsan , Ulsan, South Korea) , Chun, Doo-Man (School of Mechanical Engineering, University of Ulsan , Ulsan, South Korea)
In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to pro...
Yuan Q. & Zhao Y.-P. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface . J. Fluid Mech. 716 , 171 – 188 ( 2013 ).
Chun D.-M. . Fabrication of transparent superhydrophobic surface on thermoplastic polymer using laser beam machining and compression molding for mass production . CIRP Ann. Technol. 63 , 525 – 528 ( 2014 ).
Auad P. , Ueda E. & Levkin P. A. Facile and Multiple Replication of Superhydrophilic–Superhydrophobic Patterns Using Adhesive Tape . ACS Appl. Mater. Interfaces 5 , 8053 – 8057 ( 2013 ). 23899464
Yuan Q. , Huang X. & Zhao Y.-P. Dynamic spreading on pillar-arrayed surfaces: Viscous resistance versus molecular friction . Phys. Fluids 26 , 92104 ( 2014 ).
Toma M. , Loget G. & Corn R. M. Flexible teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning . ACS Appl. Mater. Interfaces 6 , 11110 – 11117 ( 2014 ). 24654844
Davaasuren G. , Ngo C.-V. , Oh H.-S. & Chun D.-M. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS) . Appl. Surf. Sci. 314 , 530 – 536 ( 2014 ).
Long J. . Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal . ACS Appl. Mater. Interfaces 7 , 9858 – 9865 ( 2015 ). 25906058
Wang B.-B. , Zhao Y.-P. & Yu T. Fabrication of novel superhydrophobic surfaces and droplet bouncing behavior—part 2: water droplet impact experiment on superhydrophobic surfaces constructed using ZnO nanoparticles . J. Adhes. Sci. Technol. 25 , 93 – 108 ( 2011 ).
Yong J. . Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays . Langmuir 29 , 3274 – 3279 ( 2013 ). 23391207
Ngo C.-V. , Davaasuren G. , Oh H.-S. & Chun D.-M. Transparency and superhydrophobicity of cone-shaped micropillar array textured polydimethylsiloxane . Int. J. Precis. Eng. Manuf. 16 , 1347 – 1353 ( 2015 ).
Wang B.-B. , Feng J.-T. , Zhao Y.-P. & Yu T. X. Fabrication of novel superhydrophobic surfaces and water droplet bouncing behavior—part 1: stable ZnO–PDMS superhydrophobic surface with low hysteresis constructed using ZnO nanoparticles . J. Adhes. Sci. Technol. 24 , 2693 – 2705 ( 2010 ).
Akram Raza M. , Kooij E. S. , van Silfhout A. & Poelsema B. Superhydrophobic Surfaces by Anomalous Fluoroalkylsilane Self-Assembly on Silica Nanosphere Arrays . Langmuir 26 , 12962 – 12972 ( 2010 ). 20666424
Pacifico J. , Endo K. , Morgan S. & Mulvaney P. Superhydrophobic Effects of Self-Assembled Monolayers on Micropatterned Surfaces: 3-D Arrays Mimicking the Lotus Leaf . Langmuir 22 , 11072 – 11076 ( 2006 ). 17154586
Passoni L. . Multiscale Effect of Hierarchical Self-Assembled Nanostructures on Superhydrophobic Surface . Langmuir 30 , 13581 – 13587 ( 2014 ). 25346328
Nishimoto S. . Assembly of Self-Assembled Monolayer-Coated Al2O3 on TiO2 Thin Films for the Fabrication of Renewable Superhydrophobic−Superhydrophilic Structures . Langmuir 25 , 7226 – 7228 ( 2009 ). 19563218
Zhang L. , Chen H. , Sun J. & Shen J. Layer-by-Layer Deposition of Poly (diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate—Facile Method to Prepare a Superhydrophobic Surface . Chem. Mater. 19 , 948 – 953 ( 2007 ).
Liao K.-S. , Wan A. , Batteas J. D. & Bergbreiter D. E. Superhydrophobic Surfaces Formed Using Layer-by-Layer Self-Assembly with Aminated Multiwall Carbon Nanotubes . Langmuir 24 , 4245 – 4253 ( 2008 ). 18324860
Buck M. E. , Schwartz S. C. & Lynn D. M. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers . Chem. Mater. 22 , 6319 – 6327 ( 2010 ). 21151704
Yoo J.-H. . Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal . Nanotechnology 27 , 145604 ( 2016 ). 26916834
Checco A. , Rahman A. & Black C. T. Robust Superhydrophobicity in Large‐Area Nanostructured Surfaces Defined by Block‐Copolymer Self Assembly . Adv. Mater. 26 , 886 – 891 ( 2014 ). 24142578
Wu L. . Self-assembled monolayers of perfluoroalkylsilane on plasma-hydroxylated silicon substrates . Appl. Surf. Sci. 349 , 683 – 694 ( 2015 ).
Zhang L. , Wu J. , Hedhili M. N. , Yang X. & Wang P. Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces . J. Mater. Chem. A 3 , 2844 – 2852 ( 2015 ).
Choo S. , Choi H.-J. & Lee H. Water-collecting behavior of nanostructured surfaces with special wettability . Appl. Surf. Sci. 324 , 563 – 568 ( 2015 ).
Wang C.-F. & Hsueh T.-W. Patterning Superhydrophobic Surfaces To Realize Anisotropic Wettability and To Transport Micro-Liter-Sized Droplets to Any Type of Surface . J. Phys. Chem. C 118 , 12399 – 12404 ( 2014 ).
Lee A. , Moon M.-W. , Lim H. , Kim W.-D. & Kim H.-Y. Water harvest via dewing . Langmuir 28 , 10183 – 10191 ( 2012 ). 22731870
Yao X. , Song Y. & Jiang L. Applications of Bio‐Inspired Special Wettable Surfaces . Adv. Mater. 23 , 719 – 734 ( 2011 ). 21287632
Ueda E. & Levkin P. A. Emerging Applications of Superhydrophilic‐Superhydrophobic Micropatterns . Adv. Mater. 25 , 1234 – 1247 ( 2013 ). 23345109
Zhang Y.-L. , Xia H. , Kim E. & Sun H.-B. Recent developments in superhydrophobic surfaces with unique structural and functional properties . Soft Matter 8 , 11217 – 11231 ( 2012 ).
Elsharkawy M. , Schutzius T. M. & Megaridis C. M. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices . Lab Chip 14 , 1168 – 1175 ( 2014 ). 24481036
Sousa M. P. & Mano J. F. Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing . Cellulose 20 , 2185 – 2190 ( 2013 ).
Li X. , Tian J. , Garnier G. & Shen W. Fabrication of paper-based microfluidic sensors by printing . Colloids surfaces B Biointerfaces 76 , 564 – 570 ( 2010 ). 20097546
Wang Y. , Li X. , Hu H. , Liu G. & Rabnawaz M. Hydrophilically patterned superhydrophobic cotton fabrics and their use in ink printing . J. Mater. Chem. A 2 , 8094 – 8102 ( 2014 ).
Lai Y. , Pan F. , Xu C. , Fuchs H. & Chi L. In Situ Surface‐Modification‐Induced Superhydrophobic Patterns with Reversible Wettability and Adhesion . Adv. Mater. 25 , 1682 – 1686 ( 2013 ). 23208816
Li J. , Ueda E. , Nallapaneni A. , Li L. & Levkin P. Printable superhydrophilic–superhydrophobic micropatterns based on supported lipid layers . Langmuir ( 2012 ).
Nakata K. . Rewritable Superhydrophilic– Superhydrophobic Patterns on a Sintered Titanium Dioxide Substrate . Langmuir 26 , 11628 – 11630 ( 2010 ). 20552954
Nishimoto S. . TiO 2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing . Appl. Surf. Sci. 255 , 6221 – 6225 ( 2009 ).
Tian D. , Song Y. & Jiang L. Patterning of controllable surface wettability for printing techniques . Chem. Soc. Rev. 42 , 5184 – 5209 ( 2013 ). 23511610
Shen W. , Li M. , Ye C. , Jiang L. & Song Y. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection . Lab Chip 12 , 3089 – 3095 ( 2012 ). 22763412
Bao B. . Fabrication of Patterned Concave Microstructures by Inkjet Imprinting . Adv. Funct. Mater. 25 , 3286 – 3294 ( 2015 ).
Bao B. . Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing . Small 11 , 1649 – 1654 ( 2015 ). 25641755
Yang Q. . Highly reproducible SERS arrays directly written by inkjet printing . Nanoscale 7 , 421 – 425 ( 2015 ). 25308163
Sowade E. , Blaudeck T. & Baumann R. R. Self-assembly of spherical colloidal photonic crystals inside inkjet-printed droplets . Cryst. Growth Des. ( 2016 ).
Nguyen P. Q. M. , Yeo L.-P. , Lok B.-K. & Lam Y.-C. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics . ACS Appl. Mater. Interfaces 6 , 4011 – 4016 ( 2014 ). 24571607
Yuan Z. . Preparation and anti‐icing property of a lotus‐leaf‐like superhydrophobic low‐density polyethylene coating with low sliding angle . Polym. Eng. Sci. 52 , 2310 – 2315 ( 2012 ).
Barona D. & Amirfazli A. Producing a superhydrophobic paper and altering its repellency through ink-jet printing . Lab Chip 11 , 936 – 940 ( 2011 ). 21264426
Samsung. CLT-K407S. Material Safety Data Sheets (2015).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.