$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder 원문보기

Scientific reports, v.6, 2016년, pp.36735 -   

Ngo, Chi-Vinh (School of Mechanical Engineering, University of Ulsan , Ulsan, South Korea) ,  Chun, Doo-Man (School of Mechanical Engineering, University of Ulsan , Ulsan, South Korea)

Abstract AI-Helper 아이콘AI-Helper

In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to pro...

참고문헌 (46)

  1. Yuan Q. & Zhao Y.-P. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface . J. Fluid Mech. 716 , 171 – 188 ( 2013 ). 

  2. Chun D.-M. . Fabrication of transparent superhydrophobic surface on thermoplastic polymer using laser beam machining and compression molding for mass production . CIRP Ann. Technol. 63 , 525 – 528 ( 2014 ). 

  3. Auad P. , Ueda E. & Levkin P. A. Facile and Multiple Replication of Superhydrophilic–Superhydrophobic Patterns Using Adhesive Tape . ACS Appl. Mater. Interfaces 5 , 8053 – 8057 ( 2013 ). 23899464 

  4. Yuan Q. , Huang X. & Zhao Y.-P. Dynamic spreading on pillar-arrayed surfaces: Viscous resistance versus molecular friction . Phys. Fluids 26 , 92104 ( 2014 ). 

  5. Toma M. , Loget G. & Corn R. M. Flexible teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning . ACS Appl. Mater. Interfaces 6 , 11110 – 11117 ( 2014 ). 24654844 

  6. Davaasuren G. , Ngo C.-V. , Oh H.-S. & Chun D.-M. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS) . Appl. Surf. Sci. 314 , 530 – 536 ( 2014 ). 

  7. Long J. . Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal . ACS Appl. Mater. Interfaces 7 , 9858 – 9865 ( 2015 ). 25906058 

  8. Wang B.-B. , Zhao Y.-P. & Yu T. Fabrication of novel superhydrophobic surfaces and droplet bouncing behavior—part 2: water droplet impact experiment on superhydrophobic surfaces constructed using ZnO nanoparticles . J. Adhes. Sci. Technol. 25 , 93 – 108 ( 2011 ). 

  9. Yong J. . Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays . Langmuir 29 , 3274 – 3279 ( 2013 ). 23391207 

  10. Ngo C.-V. , Davaasuren G. , Oh H.-S. & Chun D.-M. Transparency and superhydrophobicity of cone-shaped micropillar array textured polydimethylsiloxane . Int. J. Precis. Eng. Manuf. 16 , 1347 – 1353 ( 2015 ). 

  11. Wang B.-B. , Feng J.-T. , Zhao Y.-P. & Yu T. X. Fabrication of novel superhydrophobic surfaces and water droplet bouncing behavior—part 1: stable ZnO–PDMS superhydrophobic surface with low hysteresis constructed using ZnO nanoparticles . J. Adhes. Sci. Technol. 24 , 2693 – 2705 ( 2010 ). 

  12. Akram Raza M. , Kooij E. S. , van Silfhout A. & Poelsema B. Superhydrophobic Surfaces by Anomalous Fluoroalkylsilane Self-Assembly on Silica Nanosphere Arrays . Langmuir 26 , 12962 – 12972 ( 2010 ). 20666424 

  13. Pacifico J. , Endo K. , Morgan S. & Mulvaney P. Superhydrophobic Effects of Self-Assembled Monolayers on Micropatterned Surfaces: 3-D Arrays Mimicking the Lotus Leaf . Langmuir 22 , 11072 – 11076 ( 2006 ). 17154586 

  14. Passoni L. . Multiscale Effect of Hierarchical Self-Assembled Nanostructures on Superhydrophobic Surface . Langmuir 30 , 13581 – 13587 ( 2014 ). 25346328 

  15. Nishimoto S. . Assembly of Self-Assembled Monolayer-Coated Al2O3 on TiO2 Thin Films for the Fabrication of Renewable Superhydrophobic−Superhydrophilic Structures . Langmuir 25 , 7226 – 7228 ( 2009 ). 19563218 

  16. Zhang L. , Chen H. , Sun J. & Shen J. Layer-by-Layer Deposition of Poly (diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate—Facile Method to Prepare a Superhydrophobic Surface . Chem. Mater. 19 , 948 – 953 ( 2007 ). 

  17. Liao K.-S. , Wan A. , Batteas J. D. & Bergbreiter D. E. Superhydrophobic Surfaces Formed Using Layer-by-Layer Self-Assembly with Aminated Multiwall Carbon Nanotubes . Langmuir 24 , 4245 – 4253 ( 2008 ). 18324860 

  18. Buck M. E. , Schwartz S. C. & Lynn D. M. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers . Chem. Mater. 22 , 6319 – 6327 ( 2010 ). 21151704 

  19. Yoo J.-H. . Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal . Nanotechnology 27 , 145604 ( 2016 ). 26916834 

  20. Checco A. , Rahman A. & Black C. T. Robust Superhydrophobicity in Large‐Area Nanostructured Surfaces Defined by Block‐Copolymer Self Assembly . Adv. Mater. 26 , 886 – 891 ( 2014 ). 24142578 

  21. Wu L. . Self-assembled monolayers of perfluoroalkylsilane on plasma-hydroxylated silicon substrates . Appl. Surf. Sci. 349 , 683 – 694 ( 2015 ). 

  22. Zhang L. , Wu J. , Hedhili M. N. , Yang X. & Wang P. Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces . J. Mater. Chem. A 3 , 2844 – 2852 ( 2015 ). 

  23. Choo S. , Choi H.-J. & Lee H. Water-collecting behavior of nanostructured surfaces with special wettability . Appl. Surf. Sci. 324 , 563 – 568 ( 2015 ). 

  24. Wang C.-F. & Hsueh T.-W. Patterning Superhydrophobic Surfaces To Realize Anisotropic Wettability and To Transport Micro-Liter-Sized Droplets to Any Type of Surface . J. Phys. Chem. C 118 , 12399 – 12404 ( 2014 ). 

  25. Lee A. , Moon M.-W. , Lim H. , Kim W.-D. & Kim H.-Y. Water harvest via dewing . Langmuir 28 , 10183 – 10191 ( 2012 ). 22731870 

  26. Yao X. , Song Y. & Jiang L. Applications of Bio‐Inspired Special Wettable Surfaces . Adv. Mater. 23 , 719 – 734 ( 2011 ). 21287632 

  27. Ueda E. & Levkin P. A. Emerging Applications of Superhydrophilic‐Superhydrophobic Micropatterns . Adv. Mater. 25 , 1234 – 1247 ( 2013 ). 23345109 

  28. Zhang Y.-L. , Xia H. , Kim E. & Sun H.-B. Recent developments in superhydrophobic surfaces with unique structural and functional properties . Soft Matter 8 , 11217 – 11231 ( 2012 ). 

  29. Elsharkawy M. , Schutzius T. M. & Megaridis C. M. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices . Lab Chip 14 , 1168 – 1175 ( 2014 ). 24481036 

  30. Sousa M. P. & Mano J. F. Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing . Cellulose 20 , 2185 – 2190 ( 2013 ). 

  31. Li X. , Tian J. , Garnier G. & Shen W. Fabrication of paper-based microfluidic sensors by printing . Colloids surfaces B Biointerfaces 76 , 564 – 570 ( 2010 ). 20097546 

  32. Wang Y. , Li X. , Hu H. , Liu G. & Rabnawaz M. Hydrophilically patterned superhydrophobic cotton fabrics and their use in ink printing . J. Mater. Chem. A 2 , 8094 – 8102 ( 2014 ). 

  33. Lai Y. , Pan F. , Xu C. , Fuchs H. & Chi L. In Situ Surface‐Modification‐Induced Superhydrophobic Patterns with Reversible Wettability and Adhesion . Adv. Mater. 25 , 1682 – 1686 ( 2013 ). 23208816 

  34. Li J. , Ueda E. , Nallapaneni A. , Li L. & Levkin P. Printable superhydrophilic–superhydrophobic micropatterns based on supported lipid layers . Langmuir ( 2012 ). 

  35. Nakata K. . Rewritable Superhydrophilic– Superhydrophobic Patterns on a Sintered Titanium Dioxide Substrate . Langmuir 26 , 11628 – 11630 ( 2010 ). 20552954 

  36. Nishimoto S. . TiO 2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing . Appl. Surf. Sci. 255 , 6221 – 6225 ( 2009 ). 

  37. Tian D. , Song Y. & Jiang L. Patterning of controllable surface wettability for printing techniques . Chem. Soc. Rev. 42 , 5184 – 5209 ( 2013 ). 23511610 

  38. Shen W. , Li M. , Ye C. , Jiang L. & Song Y. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection . Lab Chip 12 , 3089 – 3095 ( 2012 ). 22763412 

  39. Bao B. . Fabrication of Patterned Concave Microstructures by Inkjet Imprinting . Adv. Funct. Mater. 25 , 3286 – 3294 ( 2015 ). 

  40. Bao B. . Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing . Small 11 , 1649 – 1654 ( 2015 ). 25641755 

  41. Yang Q. . Highly reproducible SERS arrays directly written by inkjet printing . Nanoscale 7 , 421 – 425 ( 2015 ). 25308163 

  42. Sowade E. , Blaudeck T. & Baumann R. R. Self-assembly of spherical colloidal photonic crystals inside inkjet-printed droplets . Cryst. Growth Des. ( 2016 ). 

  43. Nguyen P. Q. M. , Yeo L.-P. , Lok B.-K. & Lam Y.-C. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics . ACS Appl. Mater. Interfaces 6 , 4011 – 4016 ( 2014 ). 24571607 

  44. Yuan Z. . Preparation and anti‐icing property of a lotus‐leaf‐like superhydrophobic low‐density polyethylene coating with low sliding angle . Polym. Eng. Sci. 52 , 2310 – 2315 ( 2012 ). 

  45. Barona D. & Amirfazli A. Producing a superhydrophobic paper and altering its repellency through ink-jet printing . Lab Chip 11 , 936 – 940 ( 2011 ). 21264426 

  46. Samsung. CLT-K407S. Material Safety Data Sheets (2015). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로