$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Electrochemical Lithium Recycling System toward Renewable and Sustainable Energy Technologies

Journal of the Electrochemical Society : JES, v.163 no.7, 2016년, pp.E199 - E205  

Bae, Hyuntae (aSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea) ,  Hwang, Soo Min (aSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea) ,  Seo, Inseok (b Research Institute of Industrial Science and Technology, POSCO Global R&D Center, Incheon, Korea) ,  Kim, Youngsik (aSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea)

Abstract AI-Helper 아이콘AI-Helper

A new system of lithium recycling is designed to recover Li from materials containing waste Li. This waste-to-lithium (WTL) system operates based on electrochemical reaction at room temperature using three functional sections: two cathode compartments, one for the waste materials and one for recycli...

Keyword

참고문헌 (27)

  1. Jeong, Goojin, Kim, Young-Ugk, Kim, Hansu, Kim, Young-Jun, Sohn, Hun-Joon. Prospective materials and applications for Li secondary batteries. Energy & environmental science, vol.4, no.6, 1986-2002.

  2. Wanger, Thomas Cherico. The Lithium future-resources, recycling, and the environment : The Lithium future. Conservation letters, vol.4, no.3, 202-206.

  3. Bernardes, A.M, Espinosa, D.C.R, Tenório, J.A.S. Recycling of batteries: a review of current processes and technologies. Journal of power sources, vol.130, no.1, 291-298.

  4. Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B.. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of power sources, vol.177, no.2, 512-527.

  5. Luo, Xubiao, Guo, Bin, Luo, Jinming, Deng, Fang, Zhang, Siyu, Luo, Shenglian, Crittenden, John. Recovery of Lithium from Wastewater Using Development of Li Ion-Imprinted Polymers. ACS sustainable chemistry et engineering, vol.3, no.3, 460-467.

  6. Jha, M.K., Kumari, A., Jha, A.K., Kumar, V., Hait, J., Pandey, B.D.. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste management, vol.33, no.9, 1890-1897.

  7. Shin, Shun Myung, Kim, Nak Hyoung, Sohn, Jeong Soo, Yang, Dong Hyo, Kim, Young Han. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, vol.79, no.3, 172-181.

  8. Chen, Xiangping, Luo, Chuanbao, Zhang, Jinxia, Kong, Jiangrong, Zhou, Tao. Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process. ACS sustainable chemistry et engineering, vol.3, no.12, 3104-3113.

  9. Li, L., Zhai, L., Zhang, X., Lu, J., Chen, R., Wu, F., Amine, K.. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of power sources, vol.262, 380-385.

  10. Mishra, D., Kim, D.J., Ralph, D.E., Ahn, J.G., Rhee, Y.H.. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste management, vol.28, no.2, 333-338.

  11. Zhang, Pingwei, Yokoyama, Toshiro, Itabashi, Osamu, Suzuki, Toshishige M., Inoue, Katsutoshi. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy, vol.47, no.2, 259-271.

  12. Cai, Guoqiang, Fung, Ka Y., Ng, Ka M., Wibowo, Christianto. Process Development for the Recycle of Spent Lithium Ion Batteries by Chemical Precipitation. Industrial & engineering chemistry research, vol.53, no.47, 18245-18259.

  13. Nie, Hehe, Xu, Long, Song, Dawei, Song, Jishun, Shi, Xixi, Wang, Xiaoqing, Zhang, Lianqi, Yuan, Zhihao. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green chemistry : an international journal and green chemistry resource : GC, vol.17, no.2, 1276-1280.

  14. Grosjean, C., Miranda, P.H., Perrin, M., Poggi, P.. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable & sustainable energy reviews, vol.16, no.3, 1735-1744.

  15. Asl, Nina Mahootcheian, Cheah, Seong Shen, Salim, Jason, Kim, Youngsik. Lithium-liquid battery: harvesting lithium from waste Li-ion batteries and discharging with water. RSC advances, vol.2, no.14, 6094-.

  16. Chun, Jinyoung, Chung, Moonsik, Lee, Jinwoo, Kim, Youngsik. Using waste Li ion batteries as cathodes in rechargeable Li–liquid batteries. Physical chemistry chemical physics : PCCP, vol.15, no.19, 7036-7040.

  17. Jones, Jacob L., Hung, Jui-Ting, Meng, Ying S.. Intermittent X-ray diffraction study of kinetics of delithiation in nano-scale LiFePO4. Journal of power sources, vol.189, no.1, 702-705.

  18. Delmas, C., Maccario, M., Croguennec, L., Le Cras, F., Weill, F.. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature materials, vol.7, no.8, 665-671.

  19. Mosbah, A., Verbaere, A., Tournoux, M.. Phases LixMnO2lambda rattachees au type spinelle. Materials research bulletin, vol.18, no.11, 1375-1381.

  20. Shao‐Horn, Y., Ein‐Eli, Y., Robertson, A. D., Averill, W. F., Hackney, S. A., Howard, W. F.. Morphology Modification and Delithiation Mechanisms of LiMn2 O 4 and Li2MnO3 by Acid Digestion. Journal of the Electrochemical Society : JES, vol.145, no.1, 16-23.

  21. Mohanty, D., Gabrisch, H.. Microstructural investigation of LixNi1/3Mn1/3Co1/3O2 (x ≤ 1) and its aged products via magnetic and diffraction study. Journal of power sources, vol.220, 405-412.

  22. Earnshaw A. E. Greenwood N. , Chemistry of Elements (second edition), 68 (1997). 

  23. Williams, D. D., Miller, R. R.. Effect of Water Vapor on the LiOH-CO2 Reaction. Dynamic Isothermal System. Industrial & engineering chemistry fundamentals, vol.9, no.3, 454-457.

  24. Zhang, W.J.. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of power sources, vol.196, no.1, 13-24.

  25. Jeong, S.-K., Inaba, M., Mogi, R., Iriyama, Y., Abe, T., Ogumi, Z.. Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries: Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions. Langmuir : the ACS journal of surfaces and colloids, vol.17, no.26, 8281-8286.

  26. Obrovac, M. N., Chevrier, V. L.. Alloy Negative Electrodes for Li-Ion Batteries. Chemical reviews, vol.114, no.23, 11444-11502.

  27. Reddy, M. V., Subba Rao, G. V., Chowdari, B. V. R.. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical reviews, vol.113, no.7, 5364-5457.

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로