$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Integrated fabrication‐conjugation methods for polymeric and hybrid microparticles for programmable drug delivery and biosensing applications

Biotechnology journal, v.11 no.12, 2016년, pp.1561 - 1571  

Jung, Sukwon (Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA) ,  Choi, Chang‐Hyung (Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea) ,  Lee, Chang‐Soo (Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea) ,  Yi, Hyunmin (Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA)

Abstract AI-Helper 아이콘AI-Helper

Functionalized polymeric microparticles possess significant potential for controlled drug delivery and biosensing applications, yet current fabrication techniques face challenges in simple and scalable fabrication and biofunctionalization. For programmable manufacture of biofunctional microparticles...

주제어

참고문헌 (57)

  1. Dendukuri , D. , Doyle , P. S. , The synthesis and assembly of polymeric microparticles using microfluidics . Adv. Mater. 2009 , 21 , 4071 – 4086 . 

  2. Euliss , L. E. , DuPont , J. A. , Gratton , S. , DeSimone , J. , Imparting size, shape, and composition control of materials for nanomedicine . Chem. Soc. Rev. 2006 , 35 , 1095 – 1104 . 

  3. Kim , J. H. , Jeon , T. Y. , Choi , T. M. , Shim , T. S. et al., Droplet microfluidics for producing functional microparticles . Langmuir 2014 , 30 , 1473 – 1488 . 

  4. Le Goff , G. C. , Srinivas , R. L. , Hill , W. A. , Doyle , P. S. , Hydrogel microparticles for biosensing . Eur. Polym. J. 2015 , 72 , 386 – 412 . 

  5. Oliveira , M. B. , Mano , J. F. , Polymer‐based microparticles in tissue engineering and regenerative medicine . Biotechnol. Progr. 2011 , 27 , 897 – 912 . 

  6. Shim , T. S. , Kim , S.‐H. , Yang , S.‐M. , Elaborate design strategies toward novel microcarriers for controlled encapsulation and release . Part. Part. Syst. Char. 2013 , 30 , 9 – 45 . 

  7. Duenas , Y. , Lee , J. , Jung , S. , Yi , H. , Multiplexed hydrogel microparticle suspension arrays for facile ribosomal rna integrity assays . Biotechnol. Bioprocess Eng. 2015 , 20 , 956 – 964 . 

  8. Uhrich , K. E. , Cannizzaro , S. M. , Langer , R. S. , Shakesheff , K. M. , Polymeric systems for controlled drug release . Chem. Rev. 1999 , 99 , 3181 – 3198 . 

  9. Seiffert , S. , Thiele , J. , Abate , A. R. , Weitz , D. A. , Smart microgel capsules from macromolecular precursors . J. Am. Chem. Soc. 2010 , 132 , 6606 – 6609 . 

  10. Champion , J. A. , Katare , Y. K. , Mitragotri , S. , Particle Shape: A new design parameter for micro‐ and nanoscale drug delivery carriers . J. Controlled Release 2007 , 121 , 3 – 9 . 

  11. Pregibon , D. C. , Toner , M. , Doyle , P. S. , Multifunctional encoded particles for high‐throughput biomolecule analysis . Science 2007 , 315 , 1393 – 1396 . 

  12. Choi , N. W. , Kim , J. , Chapin , S. C. , Duong , T. et al., Multiplexed detection of mrna using porosity‐tuned hydrogel microparticles . Anal. Chem. 2012 , 84 , 9370 – 9378 . 

  13. Appleyard , D. C. , Chapin , S. C. , Doyle , P. S. , Multiplexed protein quantification with barcoded hydrogel microparticles . Anal. Chem. 2011 , 83 , 193 – 199 . 

  14. Xu , S. , Nie , Z. , Seo , M. , Lewis , P. et al., Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition . Angew. Chem. Int. Ed. 2005 , 44 , 3799 – 3799 . 

  15. Maeda , K. , Onoe , H. , Takinoue , M. , Takeuchi , S. , Controlled synthesis of 3D multi‐compartmental particles with centrifuge‐based microdroplet formation from a multi‐barrelled capillary . Adv. Mater. 2012 , 24 , 1340 – 1346 . 

  16. Zhao , Y. , Xie , Z. , Gu , H. , Jin , L. et al., Multifunctional photonic crystal barcodes from microfluidics . NPG Asia Mater. 2012 , 4 , e25 . 

  17. Dendukuri , D. , Tsoi , K. , Hatton , T. A. , Doyle , P. S. , Controlled synthesis of nonspherical microparticles using microfluidics . Langmuir 2005 , 21 , 2113 – 2116 . 

  18. Rahmani , S. , Saha , S. , Durmaz , H. , Donini , A. et al., Chemically orthogonal three‐patch microparticles . Angew. Chem. Int. Ed. 2014 , 53 , 2332 – 2338 . 

  19. Lee , K. J. , Yoon , J. , Rahmani , S. , Hwang , S. et al., Spontaneous shape reconfigurations in multicompartmental microcylinders . Proc. Natl. Acad. Sci. USA 2012 , 109 , 16057 – 16062 . 

  20. Lee , H. S. , Kim , J. H. , Lee , J. S. , Sim , J. Y. et al., Magnetoresponsive discoidal photonic crystals toward active color pigments . Adv. Mater. 2014 , 26 , 5801 – 5807 . 

  21. Du , Y. , Lo , E. , Ali , S. , Khademhosseini , A. , Directed Assembly of Cell‐Laden Microgels for Fabrication of 3D Tissue Constructs . Proc. Natl. Acad. Sci. USA 2008 , 105 , 9522 – 9527 . 

  22. Du , Y. , Ghodousi , M. , Qi , H. , Haas , N. et al., Sequential assembly of cell‐laden hydrogel constructs to engineer vascular‐like microchannels . Biotechnol. Bioeng. 2011 , 108 , 1693 – 1703 . 

  23. Meiring , J. E. , Schmid , M. J. , Grayson , S. M. , Rathsack , B. M. et al., Hydrogel biosensor array platform indexed by shape . Chem. Mater. 2004 , 16 , 5574 – 5580 . 

  24. Chung , S. E. , Park , W. , Shin , S. , Lee , S. A. , Kwon , S. , Guided and fluidic self‐assembly of microstructures using railed microfluidic channels . Nat. Mater. 2008 , 7 , 581 – 587 . 

  25. Dendukuri , D. , Gu , S. S. , Pregibon , D. C. , Hatton , T. A. , Doyle , P. S. , Stop‐flow lithography in a microfluidic device . Lab Chip 2007 , 7 , 818 – 828 . 

  26. Dendukuri , D. , Pregibon , D. C. , Collins , J. , Hatton , T. A. , Doyle , P. S. , Continuous‐flow lithography for high‐throughput microparticle synthesis . Nat. Mater. 2006 , 5 , 365 – 369 . 

  27. Rolland , J. P. , Maynor , B. W. , Euliss , L. E. , Exner , A. E. et al., Direct fabrication and harvesting of monodisperse, shape‐specific nanobiomaterials . J. Am. Chem. Soc. 2005 , 127 , 10096 – 10100 . 

  28. Kelly , J. Y. , DeSimone , J. M. , Shape‐specific, monodisperse nano‐molding of protein particles . J. Am. Chem. Soc. 2008 , 130 , 5438 – 5439 . 

  29. Glangchai , L. C. , Caldorera‐Moore , M. , Shi , L. , Roy , K. , Nanoimprint lithography based fabrication of shape‐specific, enzymatically‐triggered smart nanoparticles . J. Controlled Release 2008 , 125 , 263 – 272 . 

  30. Lewis , C. L. , Choi , C. H. , Lin , Y. , Lee , C. S. , Yi , H. , Fabrication of uniform DNA‐conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays . Anal. Chem. 2010 , 82 , 5851 – 5858 . 

  31. Nunes , J. K. , Tsai , S. S. H. , Wan , J. , Stone , H. A. , Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis . J. Phys. D: Appl. Phys. 2013 , 46 , 114002 . 

  32. Appleyard , D. C. , Chapin , S. C. , Srinivas , R. L. , Doyle , P. S. , Bar‐coded hydrogel microparticles for protein detection: Synthesis, assay and scanning . Nat. Protoc. 2011 , 6 , 1761 – 1774 . 

  33. Floyd , R. A. , Carney , J. M. , Free‐radical damage to protein and DNA ‐ mechanisms involved and relevant observations on brain undergoing oxidative stress . Ann. Neurol. 1992 , 32 , S22 – S27 . 

  34. Chen , K. , Merkel , T. J. , Pandya , A. , Napier , M. E. et al., Low modulus biomimetic microgel particles with high loading of hemoglobin . Biomacromolecules 2012 , 13 , 2748 – 2759 . 

  35. Hermanson , G. T.. (Ed.), Bioconjugate Techniques , Elsevier Science , Burlington 2008 . 

  36. Choi , C.‐H. , Jeong , J.‐M. , Kang , S.‐M. , Lee , C.‐S. , Lee , J. , Synthesis of monodispersed microspheres from Laplace pressure induced droplets in micromolds . Adv. Mater. 2012 , 24 , 5078 – 5082 . 

  37. Choi , C.‐H. , Kim , J. , Kang , S.‐M. , Lee , J. , Lee , C.‐S. , Controllable preparation of monodisperse microspheres using geometrically mediated droplet formation in a single mold . Langmuir 2013 , 29 , 8447 – 8451 . 

  38. Choi , C.‐H. , Kang , S.‐M. , Jin , S. H. , Yi , H. , Lee , C.‐S. , Controlled fabrication of multicompartmental polymeric microparticles by sequential micromolding via surface‐tension‐induced droplet formation . Langmuir 2015 , 31 , 1328 – 1335 . 

  39. Kang , S.‐M. , Kumar , A. , Choi , C.‐H. , Tettey , K. E. et al., Triblock cylinders at fluid–fluid interfaces . Langmuir 2014 , 30 , 13199 – 13204 . 

  40. Choi , C.‐H. , Lee , J. , Yoon , K. , Tripathi , A. et al., Surface‐tension‐induced synthesis of complex particles using confined polymeric fluids . Angew. Chem. Int. Ed. 2010 , 49 , 7748 – 7752 . 

  41. Choi , C.‐H. , Lee , B. , Kim , J. , Nam , J.‐O. et al., Controlled fabrication of microparticles with complex 3D geometries by tunable interfacial deformation of confined polymeric fluids in 2D micromolds . ACS Appl. Mater. Interfaces 2015 , 7 , 11393 – 11401 . 

  42. Jung , S. , Yi , H. , Fabrication of Chitosan‐Poly(Ethylene Glycol) Hybrid hydrogel microparticles via replica molding and its application toward facile conjugation of biomolecules . Langmuir 2012 , 28 , 17061 – 17070 . 

  43. Jung , S. , Yi , H. , Facile strategy for protein conjugation with chitosan‐poly(ethylene glycol) hybrid microparticle platforms via strain‐promoted alkyne‐azide cycloaddition (SPAAC) reaction . Biomacromolecules 2013 , 14 , 3892 – 3902 . 

  44. Jung , S. , Yi , H. , Facile micromolding‐based fabrication of biopolymeric‐synthetic hydrogel microspheres with controlled structures for improved protein conjugation . Chem. Mater. 2015 , 27 , 3988 – 3998 . 

  45. Jung , S. , Yi , H. , Integrated fabrication‐conjugation approaches for biomolecular assembly and protein sensing with hybrid microparticle platforms and biofabrication ‐ a focused minireview . Korean J. Chem. Eng. 2015 , 32 , 1713 – 1719 . 

  46. Jung , S. , Yi , H. , An integrated approach for enhanced protein conjugation and capture with viral nanotemplates and hydrogel microparticle platforms via rapid bioorthogonal reactions . Langmuir 2014 , 30 , 7762 – 7770 . 

  47. Shibata , H. , Heo , Y. J. , Okitsu , T. , Matsunaga , Y. et al., Injectable hydrogel microbeads for fluorescence‐based in vivo continuous glucose monitoring . Proc. Natl. Acad. Sci. USA 2010 , 107 , 17894 – 17898 . 

  48. Khademhosseini , A. , Langer , R. , Microengineered hydrogels for tissue engineering . Biomaterials 2007 , 28 , 5087 – 5092 . 

  49. An , H. Z. , Helgeson , M. E. , Doyle , P. S. , Nanoemulsion composite microgels for orthogonal encapsulation and release . Adv. Mater. 2012 , 24 , 3838 – 3844 . 

  50. El‐Sherbiny , I. M. , Synthesis, Characterization and metal uptake capacity of a new carboxymethyl chitosan derivative . Eur. Polym. J. 2009 , 45 , 199 – 210 . 

  51. Sabaa , M. W. , Mohamed , N. A. , Mohamed , R. R. , Khalil , N. M. , El Latif , S. M. A. , Synthesis, characterization and antimicrobial activity of poly( N ‐vinyl imidazole) grafted carboxymethyl chitosan . Carbohydr. Polym. 2010 , 79 , 998 – 1005 . 

  52. MacConaghy , K. I. , Chadly , D. M. , Stoykovich , M. P. , Kaar , J. L. , Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: Impact of material and solution properties . Anal. Chem. 2015 , 87 , 3467 – 3475 . 

  53. Qu , Z. Y. , Chen , K. M. , Gu , H. C. , Xu , H. , Covalent Immobilization of proteins on 3D poly(acrylic acid) brushes: Mechanism study and a more effective and controllable process . Bioconjugate Chem. 2014 , 25 , 370 – 378 . 

  54. Chen , K. , Xu , J. , Luft , J. C. , Tian , S. M. et al., Design of asymmetric particles containing a charged interior and a neutral surface charge: Comparative study on in vivo circulation of polyelectrolyte microgels . J. Am. Chem. Soc. 2014 , 136 , 9947 – 9952 . 

  55. Islam , M. R. , Ahiabu , A. , Li , X. , Serpe , M. J. , Poly( N ‐isopropylacrylamide) microgel‐based optical devices for sensing and biosensing . Sensors 2014 , 14 , 8984 – 8995 . 

  56. Xi , W. X. , Scott , T. F. , Kloxin , C. J. , Bowman , C. N. , Click chemistry in materials science . Adv. Funct. Mater. 2014 , 24 , 2572 – 2590 . 

  57. Arnold , R. M. , Patton , D. L. , Popik , V. V. , Locklin , J. , A dynamic duo: Pairing click chemistry and postpolymerization modification to design complex surfaces . Acc. Chem. Res. 2014 , 47 , 2999 – 3008 . 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로