$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Contributions to magnetic susceptibility of brain tissue 원문보기

NMR in biomedicine, v.30 no.4, 2017년, pp.e3546 -   

Duyn, Jeff H. (Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA) ,  Schenck, John (MRI Technologies and Systems, General Electric Global Research Center, Schenectady, NY, USA)

Abstract AI-Helper 아이콘AI-Helper

This review discusses the major contributors to the subtle magnetic properties of brain tissue and how they affect MRI contrast. With the increased availability of high‐field scanners, the use of magnetic susceptibility contrast for the study of human brain anatomy and function has increased d...

주제어

참고문헌 (183)

  1. Li TQ , Yao B , van Gelderen P , Merkle H , Koretsky A , Duyn JH . Cortical architecture of the human hippocampus . Proceedings of the 16th Annual Meeting ISMRM , Toronto, Ontario, Canada 2008 ; 2219 . 

  2. Duyn JH , van Gelderen P , Li TQ , de Zwart JA , Koretsky AP , Fukunaga M . High‐field MRI of brain cortical substructure based on signal phase . Proc. Natl. Acad. Sci. U. S. A. 2007 ; 104 ( 28 ): 11 796 – 11 801 . 

  3. Ogawa S , Tank DW , Menon R , Ellermann JM , Kim SG , Merkle H , Ugurbil K . Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging . Proc. Natl. Acad. Sci. U. S. A. 1992 ; 89 ( 13 ): 5951 – 5955 . 

  4. Haacke EM , Cheng NY , House MJ , Liu Q , Neelavalli J , Ogg RJ , Khan A , Ayaz M , Kirsch W , Obenaus A . Imaging iron stores in the brain using magnetic resonance imaging . Magn. Reson. Imaging 2005 ; 23 ( 1 ): 1 – 25 . 

  5. Reichenbach JR . The future of susceptibility contrast for assessment of anatomy and function . NeuroImage 2012 ; 62 ( 2 ): 1311 – 1315 . 

  6. Liu C , Li W , Tong KA , Yeom KW , Kuzminski S . Susceptibility‐weighted imaging and quantitative susceptibility mapping in the brain . J. Magn. Reson. Imaging 2015 ; 42 ( 1 ): 23 – 41 . 

  7. Haacke EM , Liu S , Buch S , Zheng W , Wu D , Ye Y . Quantitative susceptibility mapping: current status and future directions . Magn. Reson. Imaging 2015 ; 33 ( 1 ): 1 – 25 . 

  8. Schenck JF . The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds . Med. Phys. 1996 ; 23 ( 6 ): 815 – 850 . 

  9. Atlas SW , Grossman RI , Hackney DB , Gomori JM , Campagna N , Goldberg HI , Bilaniuk LT , Zimmerman RA . Calcified intracranial lesions: detection with gradient‐echo‐acquisition rapid MR imaging . Am. J. Roentgenol. 1988 ; 150 ( 6 ): 1383 – 1389 . 

  10. Durrant CJ , Hertzberg MP , Kuchel PW . Magnetic susceptibility: further insights into macroscopic and miroscopic fields and the sphere of Lorentz . Concept Magn. Reson. A 2003 ; 18A ( 1 ): 72 – 95 . 

  11. Chu SC , Xu Y , Balschi JA , Springer CS , Jr . Bulk magnetic susceptibility shifts in NMR studies of compartmentalized samples: use of paramagnetic reagents . Magn. Reson. Med. 1990 ; 13 ( 2 ): 239 – 262 . 

  12. Wang Y , Liu T . Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker . Magn. Reson. Med. 2015 ; 73 : 82 – 101 . 

  13. Reichenbach JR , Schweser F , Serres B , Deistung A . Quantitative susceptibility mapping: concepts and applications . Clin. Neuroradiol. 2015 ; 25 ( Suppl. 2 ): 225 – 230 . 

  14. He X , Yablonskiy DA . Biophysical mechanisms of phase contrast in gradient echo MRI . Proc. Natl. Acad. Sci. U. S. A. 2009 ; 106 ( 32 ): 13 558 – 13 563 . 

  15. Duyn JH , Barbara TM . Sphere of Lorentz and demagnetization factors in white matter . Magn. Reson. Med. 2014 ; 72 ( 1 ): 1 – 3 . 

  16. Wolber J , Cherubini A , Leach MO , Bifone A . Hyperpolarized 129 Xe NMR as a probe for blood oxygenation . Magn. Reson. Med. 2000 ; 43 ( 4 ): 491 – 496 . 

  17. Haacke EM , Xu Y , Cheng YC , Reichenbach JR . Susceptibility weighted imaging (SWI) . Magn. Reson. Med. 2004 ; 52 ( 3 ): 612 – 618 . 

  18. Mittal S , Wu Z , Neelavalli J , Haacke EM . Susceptibility‐weighted imaging: technical aspects and clinical applications, part 2 . Am. J. Neuroradiol. 2009 ; 30 ( 2 ): 232 – 252 . 

  19. Cohen‐Adad J , Polimeni JR , Helmer KG , Benner T , McNab JA , Wald LL , Rosen BR , Mainero C . T(2)* mapping and B(0) orientation‐dependence at 7 T reveal cyto‐ and myeloarchitecture organization of the human cortex . NeuroImage 2012 ; 60 ( 2 ): 1006 – 1014 . 

  20. Fukunaga M , Li TQ , van Gelderen P , de Zwart JA , Shmueli K , Yao B , Lee J , Maric D , Aronova MA , Zhang G , Leapman RD , Schenck JF , Merkle H , Duyn JH . Layer‐specific variation of iron content in cerebral cortex as a source of MRI contrast . Proc. Natl. Acad. Sci. U. S. A. 2010 ; 107 ( 8 ): 3834 – 3839 . 

  21. Marques JP , van der Zwaag W , Granziera C , Krueger G , Gruetter R . Cerebellar cortical layers: in vivo visualization with structural high‐field‐strength MR imaging . Radiology 2010 ; 254 ( 3 ): 942 – 948 . 

  22. Thomas BP , Welch EB , Niederhauser BD , Whetsell WO , Jr , Anderson AW , Gore JC , Avison MJ , Creasy JL . High‐resolution 7 T MRI of the human hippocampus in vivo . J. Magn. Reson. Imaging 2008 ; 28 ( 5 ): 1266 – 1272 . 

  23. Cho ZH , Han JY , Hwang SI , Kim DS , Kim KN , Kim NB , Kim SJ , Chi JG , Park CW , Kim YB . Quantitative analysis of the hippocampus using images obtained from 7.0 T MRI . NeuroImage 2010 ; 49 ( 3 ): 2134 – 2140 . 

  24. Augustinack JC , Huber KE , Stevens AA . Roy M, Frosch MP, van der Kouwe AJ, Wald LL, Van Leemput K, McKee AC, Fischl B, Alzheimer's Disease Neuroimaging I. Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI . NeuroImage 2013 ; 64 : 32 – 42 . 

  25. Vertinsky AT , Coenen VA , Lang DJ , Kolind S , Honey CR , Li D , Rauscher A . Localization of the subthalamic nucleus: optimization with susceptibility‐weighted phase MR imaging . Am. J. Neuroradiol. 2009 ; 30 ( 9 ): 1717 – 1724 . 

  26. Kerl HU , Gerigk L , Huck S , Al‐Zghloul M , Groden C , Nolte IS . Visualisation of the zona incerta for deep brain stimulation at 3.0 Tesla. Clin . Neurobiologia 2012 ; 22 ( 1 ): 55 – 68 . 

  27. Abosch A , Yacoub E , Ugurbil K , Harel N . An assessment of current brain targets for deep brain stimulation surgery with susceptibility‐weighted imaging at 7 tesla . Neurosurgery 2010 ; 67 ( 6 ): 1745 – 1756 .discussion 1756 

  28. Walsh AJ , Wilman AH . Susceptibility phase imaging with comparison to R2 mapping of iron‐rich deep grey matter . NeuroImage 2011 ; 57 ( 2 ): 452 – 461 . 

  29. Nolte IS , Gerigk L , Al‐Zghloul M , Groden C , Kerl HU . Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla . Acta Neuropathol. 2012 ; 154 ( 3 ): 481 – 494 . 

  30. Lotfipour AK , Wharton S , Schwarz ST , Gontu V , Schafer A , Peters AM , Bowtell RW , Auer DP , Gowland PA , Bajaj NP . High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease . J. Magn. Reson. Imaging 2012 ; 35 ( 1 ): 48 – 55 . 

  31. Cho ZH , Oh SH , Kim JM , Park SY , Kwon DH , Jeong HJ , Kim YB , Chi JG , Park CW , Huston J , 3rd , Lee KH , Jeon BS . Direct visualization of Parkinson's disease by in vivo human brain imaging using 7.0 T magnetic resonance imaging. Mov . Disasters 2011 ; 26 ( 4 ): 713 – 718 . 

  32. di Ieva A , Lam T , Alcaide‐Leon P , Bharatha A , Montanera W , Cusimano MD . Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives . J. Neurosurg. 2015 ; 123 : 1463 – 1475 . 

  33. Schenck JF , Zimmerman EA . High‐field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed. 2004 ; 17 ( 7 ): 433 – 445 . 

  34. Schipper HM . Neurodegeneration with brain iron accumulation – clinical syndromes and neuroimaging . Biochim. Biophys. Acta 2012 ; 1822 ( 3 ): 350 – 360 . 

  35. Hallgren B , Sourander P . The effect of age on the non‐haemin iron in the human brain . J. Neurochem. 1958 ; 3 ( 1 ): 41 – 51 . 

  36. Hallgren B , Sourander P . The non‐haemin iron in the cerebral cortex in Alzheimer's disease . J. Neurochem. 1960 ; 5 : 307 – 310 . 

  37. Morris CM , Candy JM , Oakley AE , Bloxham CA , Edwardson JA . Histochemical distribution of non‐haem iron in the human brain . Acta Anat. (Basel) 1992 ; 144 ( 3 ): 235 – 257 . 

  38. Drayer B , Burger P , Darwin R , Riederer S , Herfkens R , Johnson GA . MRI of brain iron . Am. J. Roentgenol. 1986 ; 147 ( 1 ): 103 – 110 . 

  39. Connor JR , Menzies SL , St Martin SM , Mufson EJ . Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains . J. Neurosci. Res. 1990 ; 27 ( 4 ): 595 – 611 . 

  40. Rutledge JN , Hilal SK , Silver AJ , Defendini R , Fahn S . Study of movement disorders and brain iron by MR . Am. J. Roentgenol. 1987 ; 149 ( 2 ): 365 – 379 . 

  41. LeVine SM , Macklin WB . Iron‐enriched oligodendrocytes: a reexamination of their spatial distribution . J. Neurosci. Res. 1990 ; 26 ( 4 ): 508 – 512 . 

  42. Miyajima H . Aceruloplasminemia . Neuropathology 2015 ; 35 ( 1 ): 83 – 90 . 

  43. Burdo JR , Connor JR . Brain iron uptake and homeostatic mechanisms: an overview . Biometals 2003 ; 16 ( 1 ): 63 – 75 . 

  44. Ward RJ , Zucca FA , Duyn JH , Crichton RR , Zecca L . The role of iron in brain ageing and neurodegenerative disorders . Lancet Neurol. 2014 ; 13 ( 10 ): 1045 – 1060 . 

  45. Pal PK , Samii A , Calne DB . Manganese neurotoxicity: a review of clinical features, imaging and pathology . Neurotoxicology 1999 ; 20 ( 2–3 ): 227 – 238 . 

  46. McDonald RJ , McDonald JS , Kallmes DF , Jentoft ME , Murray DL , Thielen KR , Williamson EE , Eckel LJ . Intracranial gadolinium deposition after contrast‐enhanced MR imaging . Radiology 2015 ; 275 ( 3 ): 772 – 782 . 

  47. Connor JR . Pathophysiology of restless legs syndrome: evidence for iron involvement . Curr. Neurol. Neurosci. Rep. 2008 ; 8 ( 2 ): 162 – 166 . 

  48. Ogawa S , Lee TM . Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation . Magn. Reson. Med. 1990 ; 16 ( 1 ): 9 – 18 . 

  49. Schenck JF . Health and physiological effects of human exposure to whole‐body four‐tesla magnetic fields during MRI . Ann. N. Y. Acad. Sci. 1992 ; 649 : 285 – 301 . 

  50. Ogawa S , Lee TM , Kay AR , Tank DW . Brain magnetic resonance imaging with contrast dependent on blood oxygenation . Proc. Natl. Acad. Sci. U. S. A. 1990 ; 87 ( 24 ): 9868 – 9872 . 

  51. He X , Yablonskiy DA . Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state . Magn. Reson. Med. 2007 ; 57 ( 1 ): 115 – 126 . 

  52. Christen T , Schmiedeskamp H , Straka M , Bammer R , Zaharchuk G . Measuring brain oxygenation in humans using a multiparametric quantitative blood oxygenation level dependent MRI approach . Magn. Reson. Med. 2012 ; 68 ( 3 ): 905 – 911 . 

  53. Fan AP , Bilgic B , Gagnon L , Witzel T , Bhat H , Rosen BR , Adalsteinsson E . Quantitative oxygenation venography from MRI phase . Magn. Reson. Med. 2014 ; 72 ( 1 ): 149 – 159 . 

  54. Reichenbach JR , Venkatesan R , Schillinger DJ , Kido DK , Haacke EM . Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent . Radiology 1997 ; 204 ( 1 ): 272 – 277 . 

  55. Lee J , Hirano Y , Fukunaga M , Silva AC , Duyn JH . On the contribution of deoxy‐hemoglobin to MRI gray–white matter phase contrast at high field . NeuroImage 2010 ; 49 ( 1 ): 193 – 198 . 

  56. Duvernoy HM , Delon S , Vannson JL . Cortical blood vessels of the human brain . Brain Res. Bull. 1981 ; 7 ( 5 ): 519 – 579 . 

  57. Weber B , Keller AL , Reichold J , Logothetis NK . The microvascular system of the striate and extrastriate visual cortex of the macaque . Cereb. Cortex 2008 ; 18 ( 10 ): 2318 – 2330 . 

  58. Haacke EM , Beggs CB , Habib C . The role of venous abnormalities in neurological disease . Rev. Recent Clin. Trials 2012 ; 7 ( 2 ): 100 – 116 . 

  59. Kou Z , Wu Z , Tong KA , Holshouser B , Benson RR , Hu J , Haacke EM . The role of advanced MR imaging findings as biomarkers of traumatic brain injury . J. Head Trauma Rehabil. 2010 ; 25 ( 4 ): 267 – 282 . 

  60. Brooks RA , Vymazal J , Goldfarb RB , Bulte JW , Aisen P . Relaxometry and magnetometry of ferritin . Magn. Reson. Med. 1998 ; 40 ( 2 ): 227 – 235 . 

  61. Zheng W , Nichol H , Liu S , Cheng YC , Haacke EM . Measuring iron in the brain using quantitative susceptibility mapping and X‐ray fluorescence imaging . NeuroImage 2013 ; 78 : 68 – 74 . 

  62. Langkammer C , Schweser F , Krebs N , Deistung A , Goessler W , Scheurer E , Sommer K , Reishofer G , Yen K , Fazekas F , Ropele S , Reichenbach JR . Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study . NeuroImage 2012 ; 62 ( 3 ): 1593 – 1599 . 

  63. Shmueli K , de Zwart JA , van Gelderen P , Li TQ , Dodd SJ , Duyn JH . Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data . Magn. Reson. Med. 2009 ; 62 ( 6 ): 1510 – 1522 . 

  64. Wharton S , Bowtell R . Whole‐brain susceptibility mapping at high field: a comparison of multiple‐ and single‐orientation methods . NeuroImage 2010 ; 53 ( 2 ): 515 – 525 . 

  65. Schweser F , Deistung A , Lehr BW , Reichenbach JR . Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage 2011 ; 54 ( 4 ): 2789 – 2807 . 

  66. Stuber C , Morawski M , Schafer A , Labadie C , Wahnert M , Leuze C , Streicher M , Barapatre N , Reimann K , Geyer S , Spemann D , Turner R . Myelin and iron concentration in the human brain: a quantitative study of MRI contrast . NeuroImage 2014 ; 93 ( Pt 1 ): 95 – 106 . 

  67. Bilgic B , Pfefferbaum A , Rohlfing T , Sullivan EV , Adalsteinsson E . MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping . NeuroImage 2012 ; 59 ( 3 ): 2625 – 2635 . 

  68. Ordidge RJ , Gorell JM , Deniau JC , Knight RA , Helpern JA . Assessment of relative brain iron concentrations using T2‐weighted and T2*‐weighted MRI at 3 Tesla . Magn. Reson. Med. 1994 ; 32 ( 3 ): 335 – 341 . 

  69. Yablonskiy DA , Haacke EM . Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime . Magn. Reson. Med. 1994 ; 32 ( 6 ): 749 – 763 . 

  70. Yao B , Li TQ , van Gelderen P , Shmueli K , de Zwart JA , Duyn JH . Susceptibility contrast in high field MRI of human brain as a function of tissue iron content . NeuroImage 2009 ; 44 ( 4 ): 1259 – 1266 . 

  71. Gelman N , Gorell JM , Barker PB , Savage RM , Spickler EM , Windham JP , Knight RA . MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content . Radiology 1999 ; 210 ( 3 ): 759 – 767 . 

  72. Deistung A , Schafer A , Schweser F , Biedermann U , Turner R , Reichenbach JR . Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude‐, phase‐, and R2*‐imaging at ultra‐high magnetic field strength . NeuroImage 2013 ; 65 : 299 – 314 . 

  73. Sun H , Walsh AJ , Lebel RM , Blevins G , Catz I , Lu JQ , Johnson ES , Emery DJ , Warren KG , Wilman AH . Validation of quantitative susceptibility mapping with Perls' iron staining for subcortical gray matter . NeuroImage 2015 ; 105 : 486 – 492 . 

  74. Muller RN , Gillis P , Moiny F , Roch A . Transverse relaxivity of particulate MRI contrast media: from theories to experiments . Magn. Reson. Med. 1991 ; 22 ( 2 ): 178 – 182 .discussion 195–176 

  75. Dusek P , Dezortova M , Wuerfel J . Imaging of iron . Int. Rev. Neurobiol. 2013 ; 110 : 195 – 239 . 

  76. Crichton RR , Boelaert JR . Inorganic Biochemistry of Iron Metabolism : from Molecular Mechanisms to Clinical Consequences . Wiley : Chichester, New York , 2001 . 

  77. Testa U . Proteins of Iron Metabolism . CRC Press : Boca Raton, FL , 2002 . 

  78. Anderson CP , Shen M , Eisenstein RS , Leibold EA . Mammalian iron metabolism and its control by iron regulatory proteins . Biochim. Biophys. Acta 2012 ; 1823 ( 9 ): 1468 – 1483 . 

  79. Du F , Qian ZM , Luo Q , Yung WH , Ke Y . Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron‐overloaded rats . Mol. Neurobiol. 2015 ; 52 ( 1 ): 101 – 114 . 

  80. Philpott CC , Ryu MS . Special delivery: distributing iron in the cytosol of mammalian cells . Front. Pharmacol. 2014 ; 5 : 173 . 

  81. Waldron KJ , Rutherford JC , Ford D , Robinson NJ . Metalloproteins and metal sensing . Nature 2009 ; 460 ( 7257 ): 823 – 830 . 

  82. Williams RJ . Free manganese(II) and iron(II) cations can act as intracellular cell controls . FEBS Lett. 1982 ; 140 ( 1 ): 3 – 10 . 

  83. Hider RC , Kong X . Iron speciation in the cytosol: an overview . Dalton Trans. 2013 ; 42 ( 9 ): 3220 – 3229 . 

  84. Halliwell B , Gutteridge JMC . Free Radicals in Biology and Medicine . Oxford University Press : New York, NY , 2015 . 

  85. Kosman DJ . Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation . Coord. Chem. Rev. 2013 ; 257 ( 1 ): 210 – 217 . 

  86. Pierre JL , Fontecave M , Crichton RR . Chemistry for an essential biological process: the reduction of ferric iron . Biometals 2002 ; 15 ( 4 ): 341 – 346 . 

  87. Hider RC , Kong XL . Glutathione: a key component of the cytoplasmic labile iron pool . Biometals 2011 ; 24 ( 6 ): 1179 – 1187 . 

  88. Shvartsman M , Cabantchik IZ . Intracellular iron trafficking: role of cytosolic ligands . Biometals 2012 ; 25 ( 4 ): 711 – 723 . 

  89. Theil EC , Ferritin . In Biological Inorganic Chemistry : Structure and Reactivity , Bertini I , Gray HB , Stiefel EI , Valentine JS (eds). University Science Books: Sausalito : CA , 2007 , pp. 144 – 150 . 

  90. McNeill A , Birchall D , Hayflick SJ , Gregory A , Schenck JF , Zimmerman EA , Shang H , Miyajima H , Chinnery PF . T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation . Neurology 2008 ; 70 ( 18 ): 1614 – 1619 . 

  91. Friedman A , Galazka‐Friedman J , Koziorowski D . Iron as a cause of Parkinson disease – a myth or a well established hypothesis? Parkinsonism Relat. Disord. 2009 ; 15 ( Suppl. 3 ): S212 – S214 . 

  92. Hare D , Ayton S , Bush A , Lei P . A delicate balance: iron metabolism and diseases of the brain . Front. Aging Neurosci. 2013 ; 5 : 34 . 

  93. Rouault TA . Iron metabolism in the CNS: implications for neurodegenerative diseases . Nat. Rev. Neurosci. 2013 ; 14 ( 8 ): 551 – 564 . 

  94. White AR , Kanninen KM , Crouch PJ . Editorial: metals and neurodegeneration: restoring the balance . Front. Aging Neurosci. 2015 ; 7 : 127 . 

  95. Wong BX , Duce JA . The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders . Front. Pharmacol. 2014 ; 5 : 81 . 

  96. Finney LA , O'Halloran TV . Transition metal speciation in the cell: insights from the chemistry of metal ion receptors . Science 2003 ; 300 ( 5621 ): 931 – 936 . 

  97. Rae TD , Schmidt PJ , Pufahl RA , Culotta VC , O'Halloran TV . Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase . Science 1999 ; 284 ( 5415 ): 805 – 808 . 

  98. Outten CE , O'Halloran TV . Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis . Science 2001 ; 292 ( 5526 ): 2488 – 2492 . 

  99. Shi H , Bencze KZ , Stemmler TL , Philpott CC . A cytosolic iron chaperone that delivers iron to ferritin . Science 2008 ; 320 ( 5880 ): 1207 – 1210 . 

  100. Frey AG , Nandal A , Park JH , Smith PM , Yabe T , Ryu MS , Ghosh MC , Lee J , Rouault TA , Park MH , Philpott CC . Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase . Proc. Natl. Acad. Sci. U. S. A. 2014 ; 111 ( 22 ): 8031 – 8036 . 

  101. Jhurry ND , Chakrabarti M , McCormick SP , Gohil VM , Lindahl PA . Mossbauer study and modeling of iron import and trafficking in human jurkat cells . Biochemistry 2013 ; 52 ( 45 ): 7926 – 7942 . 

  102. Leidgens S , Bullough KZ , Shi H , Li F , Shakoury‐Elizeh M , Yabe T , Subramanian P , Hsu E , Natarajan N , Nandal A , Stemmler TL , Philpott CC . Each member of the poly‐r(C)‐binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin . J. Biol. Chem. 2013 ; 288 ( 24 ): 17 791 – 17 802 . 

  103. Nandal A , Ruiz JC , Subramanian P , Ghimire‐Rijal S , Sinnamon RA , Stemmler TL , Bruick RK , Philpott CC . Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2 . Cell Metab. 2011 ; 14 ( 5 ): 647 – 657 . 

  104. Philpott C . Bioinorganic chemistry: getting a grip on iron . Nat. Chem. Biol. 2010 ; 6 ( 8 ): 568 – 570 . 

  105. Philpott CC . Coming into view: eukaryotic iron chaperones and intracellular iron delivery . J. Biol. Chem. 2012 ; 287 ( 17 ): 13 518 – 13 523 . 

  106. Philpott CC . Pumping iron . Elife 2014 ; 3 .e03997 

  107. Biasiotto G , di Lorenzo D , Archetti S , Zanella I . Iron and neurodegeneration: is ferritinophagy the link? Mol. Neurobiol. 2015 . [Epub ahead of print] 

  108. Dowdle WE , Nyfeler B , Nagel J , Elling RA , Liu S , Triantafellow E , Menon S , Wang Z , Honda A , Pardee G , Cantwell J , Luu C , Cornella‐Taracido I , Harrington E , Fekkes P , Lei H , Fang Q , Digan ,ME , Burdick D , Powers AF , Helliwell SB , D'Aquin S , Bastien J , Wang H , Wiederschain D , Kuerth J , Bergman P et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo . Nat. Cell Biol. 2014 ; 16 ( 11 ): 1069 – 1079 . 

  109. Goodall M , Thorburn A . Identifying specific receptors for cargo‐mediated autophagy . Cell Res. 2014 ; 24 ( 7 ): 783 – 784 . 

  110. Kaur J , Debnath J . Autophagy at the crossroads of catabolism and anabolism . Nat. Rev. Mol. Cell Biol. 2015 ; 16 ( 8 ): 461 – 472 . 

  111. Krishan S , Jansson PJ , Gutierrez E , Lane DJ , Richardson D , Sahni S . Iron metabolism and autophagy: a poorly explored relationship that has important consequences for health and disease . Nagoya J. Med. Sci. 2015 ; 77 ( 1–2 ): 1 – 6 . 

  112. Ochaba J , Lukacsovich T , Csikos G , Zheng S , Margulis J , Salazar L , Mao K , Lau AL , Yeung SY , Humbert S , Saudou F , Klionsky DJ , Finkbeiner S , Zeitlin SO , Marsh JL , Housman DE , Thompson LM , Steffan JS . Potential function for the Huntingtin protein as a scaffold for selective autophagy . Proc. Natl. Acad. Sci. U. S. A. 2014 ; 111 ( 47 ): 16 889 – 16 894 . 

  113. Mancias JD , Pontano Vaites L , Nissim S , Biancur DE , Kim AJ , Wang X , Liu Y , Goessling W , Kimmelman AC , Harper JW . Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2‐mediated proteolysis . Elife 2015 ; 4 : e10308 . 

  114. Mancias JD , Wang X , Gygi SP , Harper JW , Kimmelman AC . Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy . Nature 2014 ; 509 ( 7498 ): 105 – 109 . 

  115. Hildebrand C , Remahl S , Persson H , Bjartmar C . Myelinated nerve fibres in the CNS . Prog. Neurobiol. 1993 ; 40 ( 3 ): 319 – 384 . 

  116. MacKay AL , Vavasour IM , Rauscher A , Kolind SH , Madler B , Moore GR , Traboulsee AL , Li DK , Laule C . MR relaxation in multiple sclerosis . Neuroimaging Clin. N. Am. 2009 ; 19 ( 1 ): 1 – 26 . 

  117. Bloom M , Burnell EE , MacKay AL , Nichol CP , Valic MI , Weeks G . Fatty acyl chain order in lecithin model membranes determined from proton magnetic resonance . Biochemistry 1978 ; 17 ( 26 ): 5750 – 5762 . 

  118. Paus T , Collins DL , Evans AC , Leonard G , Pike B , Zijdenbos A . Maturation of white matter in the human brain: a review of magnetic resonance studies . Brain Res. Bull. 2001 ; 54 ( 3 ): 255 – 266 . 

  119. Dean DC , 3rd , O'Muircheartaigh J , Dirks H , Waskiewicz N , Walker L , Doernberg E , Piryatinsky I , Deoni SC . Characterizing longitudinal white matter development during early childhood. Brain Struct . Funct. 2015 ; 220 ( 4 ): 1921 – 1933 . 

  120. Deoni SC , Dean DC , 3rd , Remer J , Dirks H , O'Muircheartaigh J . Cortical maturation and myelination in healthy toddlers and young children . NeuroImage 2015 ; 115 : 147 – 161 . 

  121. O'Brien JS , Sampson EL . Lipid composition of the normal human brain: gray matter, white matter, and myelin . J. Lipid Res. 1965 ; 6 ( 4 ): 537 – 544 . 

  122. Horch RA , Gore JC , Does MD . Origins of the ultrashort‐T2 1 H NMR signals in myelinated nerve: a direct measure of myelin content? Magn. Reson. Med. 2011 ; 66 ( 1 ): 24 – 31 . 

  123. Paus T , Keshavan M , Giedd JN . Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 2008 ; 9 ( 12 ): 947 – 957 . 

  124. Zhong K , Ernst T , Buchthal S , Speck O , Anderson L , Chang L . Phase contrast imaging in neonates . NeuroImage 2011 ; 55 ( 3 ): 1068 – 1072 . 

  125. Lodygensky GA , Marques JP , Maddage R , Perroud E , Sizonenko SV , Huppi PS , Gruetter R . In vivo assessment of myelination by phase imaging at high magnetic field . NeuroImage 2012 ; 59 ( 3 ): 1979 – 1987 . 

  126. Lee J , Shmueli K , Kang BT , Yao B , Fukunaga M , van Gelderen P , Palumbo S , Bosetti F , Silva AC , Duyn JH . The contribution of myelin to magnetic susceptibility‐weighted contrasts in high‐field MRI of the brain . NeuroImage 2012 ; 59 ( 4 ): 3967 – 3975 . 

  127. Liu C , Li W , Johnson GA , Wu B . High‐field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility . NeuroImage 2011 ; 56 ( 3 ): 930 – 938 . 

  128. Wharton S , Bowtell R . Fiber orientation‐dependent white matter contrast in gradient echo MRI . Proc. Natl. Acad. Sci. U. S. A. 2012 ; 109 ( 45 ): 18 559 – 18 564 . 

  129. Schweser F , Sommer K , Deistung A , Reichenbach JR . Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain . NeuroImage 2012 ; 62 : 2083 – 2100 . 

  130. LeVine SM . Oligodendrocytes and myelin sheaths in normal, quaking and shiverer brains are enriched in iron . J. Neurosci. Res. 1991 ; 29 ( 3 ): 413 – 419 . 

  131. Schweser F , Deistung A , Lehr BW , Reichenbach JR . Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping . Med. Phys. 2010 ; 37 ( 10 ): 5165 – 5178 . 

  132. Wiggins CJ , Gudmundsdottir V , le Bihan D , Lebon V , Chaumeil M . Orientation dependence of white matter T2* contrast at 7 T: a direct demonstration . Proceedings of the 16th annual meeting ISMRM, Toronto, Ontario, Canada 2008 ; 237 . 

  133. Bender B , Klose U . The in vivo influence of white matter fiber orientation towards B(0) on T2* in the human brain . NMR Biomed. 2010 ; 23 ( 9 ): 1071 – 1076 . 

  134. Denk C , Hernandez Torres E , MacKay A , Rauscher A . The influence of white matter fibre orientation on MR signal phase and decay . NMR Biomed. 2011 ; 24 ( 3 ): 246 – 252 . 

  135. Lee J , van Gelderen P , Kuo LW , Merkle H , Silva AC , Duyn JH . T2*‐based fiber orientation mapping . NeuroImage 2011 ; 57 ( 1 ): 225 – 234 . 

  136. Sati P , Silva AC , van Gelderen P , Gaitan MI , Wohler JE , Jacobson S , Duyn JH , Reich DS . In vivo quantification of T(2) anisotropy in white matter fibers in marmoset monkeys . NeuroImage 2012 ; 59 ( 2 ): 979 – 985 . 

  137. Cherubini A , Peran P , Hagberg GE , Varsi AE , Luccichenti G , Caltagirone C , Sabatini U , Spalletta G . Characterization of white matter fiber bundles with T2* relaxometry and diffusion tensor imaging . Magn. Reson. Med. 2009 ; 61 ( 5 ): 1066 – 1072 . 

  138. Li TQ , Yao B , van Gelderen P , Merkle H , Dodd S , Talagala L , Koretsky AP , Duyn J . Characterization of T(2)(star) heterogeneity in human brain white matter . Magn. Reson. Med. 2009 ; 62 ( 6 ): 1652 – 1657 . 

  139. Liu C . Susceptibility tensor imaging . Magn. Reson. Med. 2010 ; 63 ( 6 ): 1471 – 1477 . 

  140. Lee J , Shmueli K , Fukunaga M , van Gelderen P , Merkle H , Silva AC , Duyn JH . Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure . Proc. Natl. Acad. Sci. U. S. A. 2010 ; 107 ( 11 ): 5130 – 5135 . 

  141. Lonsdale K . Diamagnetic anisotropy of organic molecules. Proc. R. Soc. London, Ser. A: Math. Phys . Sciences 1939 ; 171 ( A947 ): 0541 – 0568 . 

  142. Lounila J , Ala‐Korpela M , Jokisaari J , Savolainen MJ , Kesaniemi YA . Effects of orientational order and particle size on the NMR line positions of lipoproteins . Phys. Rev. Lett. 1994 ; 72 ( 25 ): 4049 – 4052 . 

  143. Sati P , van Gelderen P , Silva AC , Reich DS , Merkle H , de Zwart JA , Duyn JH . Micro‐compartment specific T2 relaxation in the brain . NeuroImage 2013 ; 77 : 268 – 278 . 

  144. Wharton S , Bowtell R . Effects of white matter microstructure on phase and susceptibility maps . Magn. Reson. Med. 2015 ; 73 ( 3 ): 1258 – 1269 . 

  145. Li X , Vikram DS , Lim IA , Jones CK , Farrell JA , van Zijl PC . Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7 T . NeuroImage 2012 ; 62 ( 1 ): 314 – 330 . 

  146. Li W , Wu B , Avram AV , Liu C . Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings . NeuroImage 2012 ; 59 ( 3 ): 2088 – 2097 . 

  147. Luo J , He X , Yablonskiy DA . Magnetic susceptibility induced white matter MR signal frequency shifts—experimental comparison between Lorentzian sphere and generalized Lorentzian approaches . Magn. Reson. Med. 2014 ; 71 : 1251 – 1263 

  148. van Gelderen P , Mandelkow H , de Zwart JA , Duyn JH . The anisotropy of myelin magnetic susceptibility . Proceedings of the 21st Annual Meeting ISMRM, Salt Lake City USA 2013 ; 708 . 

  149. Liu C , Li W , Wu B , Jiang Y , Johnson GA . 3D fiber tractography with susceptibility tensor imaging . NeuroImage 2012 ; 59 ( 2 ): 1290 – 1298 . 

  150. Boesch C , Slotboom J , Hoppeler H , Kreis R . In vivo determination of intra‐myocellular lipids in human muscle by means of localized 1 H‐MR‐spectroscopy . Magn. Reson. Med. 1997 ; 37 ( 4 ): 484 – 493 . 

  151. Hwang SN , Wehrli FW . The calculation of the susceptibility‐induced magnetic‐field from 3D NMR images with applications to trabecular bone . J. Magn. Reson. Ser. B 1995 ; 109 ( 2 ): 126 – 145 . 

  152. Sukstanskii AL , Yablonskiy DA . On the role of neuronal magnetic susceptibility and structure symmetry on gradient echo MR signal formation . Magn. Reson. Med. 2014 ; 71 ( 1 ): 345 – 353 . 

  153. van Gelderen P , de Zwart JA , Lee J , Sati P , Reich DS , Duyn JH . Nonexponential T(2) decay in white matter . Magn. Reson. Med. 2012 ; 67 ( 1 ): 110 – 117 . 

  154. Dortch RD , Harkins KD , Juttukonda MR , Gore JC , Does MD . Characterizing inter‐compartmental water exchange in myelinated tissue using relaxation exchange spectroscopy . Magn. Reson. Med. 2013 ; 70 : 1450 – 1459 . 

  155. Du YP , Chu R , Hwang D , Brown MS , Kleinschmidt‐DeMasters BK , Singel D , Simon JH . Fast multislice mapping of the myelin water fraction using multicompartment analysis of T2* decay at 3 T: a preliminary postmortem study . Magn. Reson. Med. 2007 ; 58 ( 5 ): 865 – 870 . 

  156. Mezer A , Yeatman JD , Stikov N , Kay KN , Cho NJ , Dougherty RF , Perry ML , Parvizi J , Hua le H , Butts‐Pauly K , Wandell BA . Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging . Nat. Med. 2013 ; 19 ( 12 ): 1667 – 1672 . 

  157. Li X , van Gelderen P , Sati P , de Zwart JA , Reich DS , Duyn JH . Detection of demyelination in multiple sclerosis by analysis of relaxation at 7 T . NeuroImage Clin. 2015 ; 7 : 709 – 714 . 

  158. Wharton S , Bowtell R . Gradient echo based fiber orientation mapping using R2* and frequency difference measurements . NeuroImage 2013 ; 83 : 1011 – 1023 . 

  159. Young IR , Khenia S , Thomas DG , Davis CH , Gadian DG , Cox IJ , Ross BD , Bydder GM . Clinical magnetic susceptibility mapping of the brain . J. Comput. Assist. Tomogr. 1987 ; 11 ( 1 ): 2 – 6 . 

  160. Edelman RR , Johnson K , Buxton R , Shoukimas G , Rosen BR , Davis KR , Brady TJ . MR of hemorrhage: a new approach . Am. J. Neuroradiol. 1986 ; 7 ( 5 ): 751 – 756 . 

  161. Sehgal V , Delproposto Z , Haacke EM , Tong KA , Wycliffe N , Kido DK , Xu Y , Neelavalli J , Haddar D , Reichenbach JR . Clinical applications of neuroimaging with susceptibility‐weighted imaging . J. Magn. Reson. Imaging 2005 ; 22 ( 4 ): 439 – 450 . 

  162. Tong KA , Ashwal S , Obenaus A , Nickerson JP , Kido D , Haacke EM . Susceptibility‐weighted MR imaging: a review of clinical applications in children . Am. J. Neuroradiol. 2008 ; 29 ( 1 ): 9 – 17 . 

  163. Mohammed W , Xunning H , Haibin S , Jingzhi M . Clinical applications of susceptibility‐weighted imaging in detecting and grading intracranial gliomas: a review . Cancer Imaging 2013 ; 13 : 186 – 195 . 

  164. Lupo JM , Li Y , Hess CP , Nelson SJ . Advances in ultra‐high field MRI for the clinical management of patients with brain tumors . Curr. Opin. Neurol. 2011 ; 24 ( 6 ): 605 – 615 . 

  165. Sehgal V , Delproposto Z , Haddar D , Haacke EM , Sloan AE , Zamorano LJ , Barger G , Hu J , Xu Y , Prabhakaran KP , Elangovan IR , Neelavalli J , Reichenbach JR . Susceptibility‐weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses . J. Magn. Reson. Imaging 2006 ; 24 ( 1 ): 41 – 51 . 

  166. Bian W , Hess CP , Chang SM , Nelson SJ , Lupo JM . Susceptibility‐weighted MR imaging of radiation therapy‐induced cerebral microbleeds in patients with glioma: a comparison between 3 T and 7 T . Neuroradiology 2014 ; 56 ( 2 ): 91 – 96 . 

  167. Sharp DJ , Ham TE . Investigating white matter injury after mild traumatic brain injury . Curr. Opin. Neurol. 2011 ; 24 ( 6 ): 558 – 563 . 

  168. Versluis MJ , van der Grond J , van Buchem MA , van Zijl P , Webb AG . High‐field imaging of neurodegenerative diseases . Neuroimaging Clin. N. Am. 2012 ; 22 ( 2 ): 159 – 171 .ix 

  169. Liem MK , Lesnik Oberstein SA , Versluis MJ , Maat‐Schieman ML , Haan J , Webb AG , Ferrari MD , van Buchem MA , van der Grond J . 7 T MRI reveals diffuse iron deposition in putamen and caudate nucleus in CADASIL . J. Neurol. Neurosurg. Psychiatry 2012 ; 83 ( 12 ): 1180 – 1185 . 

  170. Hingwala DR , Kesavadas C , Thomas B , Kapilamoorthy TR . Susceptibility weighted imaging in the evaluation of movement disorders . Clin. Radiol. 2013 ; 68 ( 6 ): e338 – e348 . 

  171. van Rooden S , Doan NT , Versluis MJ , Goos JD , Webb AG , Oleksik AM , van der Flier WM , Scheltens P , Barkhof F , Weverling‐Rynsburger AW , Blauw GJ , Reiber JH , van Buchem MA , Milles J , van der Grond J . 7T T(2)*‐weighted magnetic resonance imaging reveals cortical phase differences between early‐ and late‐onset Alzheimer's disease . Neurobiol. Aging 2015 ; 36 ( 1 ): 20 – 26 . 

  172. Ignjatovic A , Stevic Z , Lavrnic S , Dakovic M , Bacic G . Brain iron MRI: a biomarker for amyotrophic lateral sclerosis . J. Magn. Reson. Imaging 2013 ; 38 ( 6 ): 1472 – 1479 . 

  173. Kwan JY , Jeong SY , van Gelderen P , Deng HX , Quezado MM , Danielian LE , Butman JA , Chen L , Bayat E , Russell J , Siddique T , Duyn JH , Rouault TA , Floeter MK . Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 Tesla MRI and pathology . PLoS One 2012 ; 7 ( 4 ) e35241. 

  174. Bagnato F , Hametner S , Yao B , van Gelderen P , Merkle H , Cantor FK , Lassmann H , Duyn JH . Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla . Brain 2011 ; 134 ( Pt 12 ): 3602 – 3615 . 

  175. Bian W , Harter K , Hammond‐Rosenbluth KE , Lupo JM , Xu D , Kelley DA , Vigneron DB , Nelson SJ , Pelletier D . A serial in vivo 7 T magnetic resonance phase imaging study of white matter lesions in multiple sclerosis . Mult. Scler. 2013 ; 19 ( 1 ): 69 – 75 . 

  176. Mainero C , Benner T , Radding A , van der Kouwe A , Jensen R , Rosen BR , Kinkel RP . In vivo imaging of cortical pathology in multiple sclerosis using ultra‐high field MRI . Neurology 2009 ; 73 ( 12 ): 941 – 948 . 

  177. Mainero C , Louapre C , Govindarajan ST , Gianni C , Nielsen AS , Cohen‐Adad J , Sloane J , Kinkel RP . A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging . Brain 2015 ; 138 ( Pt 4 ): 932 – 945 . 

  178. Pitt D , Boster A , Pei W , Wohleb E , Jasne A , Zachariah CR , Rammohan K , Knopp MV , Schmalbrock P . Imaging cortical lesions in multiple sclerosis with ultra‐high‐field magnetic resonance imaging . Arch. Neurol. 2010 ; 67 ( 7 ): 812 – 818 . 

  179. Wiggermann V , Hernandez Torres E , Vavasour IM , Moore GR , Laule C , MacKay AL , Li DK , Traboulsee A , Rauscher A . Magnetic resonance frequency shifts during acute MS lesion formation . Neurology 2013 ; 81 ( 3 ): 211 – 218 . 

  180. Yao B , Hametner S , van Gelderen P , Merkle H , Chen C , Lassmann H , Duyn JH , Bagnato F . 7 Tesla magnetic resonance imaging to detect cortical pathology in multiple sclerosis . PLoS One 2014 ; 9 ( 10 ) e108863. 

  181. Haacke EM , Makki M , Ge Y , Maheshwari M , Sehgal V , Hu J , Selvan M , Wu Z , Latif Z , Xuan Y , Khan O , Garbern J , Grossman RI . Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging . J. Magn. Reson. Imaging 2009 ; 29 ( 3 ): 537 – 544 . 

  182. Yablonskiy DA , Luo J , Sukstanskii AL , Iyer A , Cross AH . Biophysical mechanisms of MRI signal frequency contrast in multiple sclerosis . Proc. Natl. Acad. Sci. U. S. A. 2012 ; 109 ( 35 ): 14 212 – 14 217 . 

  183. Duyn JH . Frequency shifts in the myelin water compartment . Magn. Reson. Med. 2014 ; 71 ( 6 ): 1953 – 1955 . 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로