$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Additively Manufactured RF Components and Modules: Toward Empowering the Birth of Cost-Efficient Dense and Ubiquitous IoT Implementations 원문보기

Proceedings of the IEEE, v.105 no.4, 2017년, pp.702 - 722  

Nauroze, Syed Abdullah (Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, U.S.A.) ,  Hester, Jimmy G. (Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, U.S.A.) ,  Tehrani, Bijan K. (Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, U.S.A.) ,  Su, Wenjing (Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, U.S.A.) ,  Bito, Jo (Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, U.S.A.) ,  Bahr, Ryan (Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, U.S.A.) ,  Kimionis, John (Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, U.S.A.) ,  Tentzeris, Manos M. (Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, U.S.A.

Abstract AI-Helper 아이콘AI-Helper

In this review, the particular importance and associated opportunities of additively manufactured radiofrequency (RF) components and modules for Internet of Things (IoT) and millimeter-wave ubiquitous sensing applications is thoroughly discussed. First, the current advances and capabilities of addit...

참고문헌 (115)

  1. 10.1109/APS.2014.6904755 

  2. IEEE Microw Mag Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems valenta 2014 10.1109/MMM.2014.2309499 15 108 

  3. Hwang, Kyeongil, Jung, Yen‐Sook, Heo, Youn‐Jung, Scholes, Fiona H., Watkins, Scott E., Subbiah, Jegadesan, Jones, David J., Kim, Dong‐Yu, Vak, Doojin. Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells. Advanced materials, vol.27, no.7, 1241-1247.

  4. Proc Eur Photovolt Sol Energy Conf Exhibit New efficiency frontiers with wafer-bonded multi-junction solar cells tibbits 2014 1 

  5. Proc China-Japan Joint Microw Conf Measurement of complex permittivity for liquid materials using the open-ended cut-off waveguide reflection method shibata 2011 1 

  6. 10.1109/MWSYM.2012.6259483 

  7. Jo Bito, Hester, Jimmy G., Tentzeris, Manos M.. Ambient RF Energy Harvesting From a Two-Way Talk Radio for Flexible Wearable Wireless Sensor Devices Utilizing Inkjet Printing Technologies. IEEE transactions on microwave theory and techniques, vol.63, no.12, 4533-4543.

  8. Collado, Ana, Georgiadis, Apostolos. Conformal Hybrid Solar and Electromagnetic (EM) Energy Harvesting Rectenna. IEEE transactions on circuits and systems. a publication of the IEEE Circuits and Systems Society. I, Regular papers, vol.60, no.8, 2225-2234.

  9. Danesh, M., Long, J. R.. Photovoltaic Antennas for Autonomous Wireless Systems. IEEE transactions on circuits and systems. a publication of the IEEE Circuits and Systems Society. II, Express briefs, vol.58, no.12, 807-811.

  10. Eggenhuisen, T. M., Galagan, Y., Biezemans, A. F. K. V., Slaats, T. M. W. L., Voorthuijzen, W. P., Kommeren, S., Shanmugam, S., Teunissen, J. P., Hadipour, A., Verhees, W. J. H., Veenstra, S. C., Coenen, M. J. J., Gilot, J., Andriessen, R., Groen, W. A.. High efficiency, fully inkjet printed organic solar cells with freedom of design. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.14, 7255-7262.

  11. Islam, M. A., Karmakar, N. C.. A Novel Compact Printable Dual-Polarized Chipless RFID System. IEEE transactions on microwave theory and techniques, vol.60, no.7, 2142-2151.

  12. Proc Eur Microw Conf Design of fully printable planar chipless RFID transponder with 35-bit data capacity preradovic 2009 13 

  13. Girbau, D., Lorenzo, J., Lazaro, A., Ferrater, C., Villarino, R.. Frequency-Coded Chipless RFID Tag Based on Dual-Band Resonators. IEEE antennas and wireless propagation letters, vol.11, 126-128.

  14. Naibo Zhang, Mingjun Hu, Lingmin Shao, Jun Yang. Localization of Printed Chipless RFID in 3-D Space. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.26, no.5, 373-375.

  15. Shrestha, S., Balachandran, M., Agarwal, M., Phoha, V.V., Varahramyan, K.. A Chipless RFID Sensor System for Cyber Centric Monitoring Applications. IEEE transactions on microwave theory and techniques, vol.57, no.5, 1303-1309.

  16. IEEE Trans Microw Theory Techn Inkjet-printed flexible mm-wave Van-Atta reflectarrays: A solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins hester 2017 57 1303 

  17. Girbau, D., Ramos, A., Lazaro, A., Rima, S., Villarino, R.. Passive Wireless Temperature Sensor Based on Time-Coded UWB Chipless RFID Tags. IEEE transactions on microwave theory and techniques, vol.60, no.11, 3623-3632.

  18. Proc 41st Eur Microw Conf Passive chipless wireless sensor for two-dimensional displacement measurement mandel 2011 79 

  19. 10.1109/ICSENS.2015.7370300 

  20. Preradovic, S., Balbin, I., Karmakar, N.C., Swiegers, G.F.. Multiresonator-Based Chipless RFID System for Low-Cost Item Tracking. IEEE transactions on microwave theory and techniques, vol.57, no.5, 1411-1419.

  21. Wenjing Su, Cook, Benjamin S., Tentzeris, Manos M.. Additively Manufactured Microfluidics-Based “Peel-and-Replace” RF Sensors for Wearable Applications. IEEE transactions on microwave theory and techniques, vol.64, no.6, 1928-1936.

  22. Amin, Emran Md, Bhuiyan, Md Shakil, Karmakar, Nemai C., Winther-Jensen, Bjorn. Development of a Low Cost Printable Chipless RFID Humidity Sensor. IEEE sensors journal, vol.14, no.1, 140-149.

  23. 10.1002/1521-4095(200111)13:21<1601::AID-ADMA1601>3.3.CO;2-O 

  24. 10.1109/MWSYM.2013.6697784 

  25. Li, Zhuo, Le, Taoran, Wu, Zhenkun, Yao, Yagang, Li, Liyi, Tentzeris, Manos, Moon, Kyoung‐Sik, Wong, C. P.. Rational Design of a Printable, Highly Conductive Silicone‐based Electrically Conductive Adhesive for Stretchable Radio‐Frequency Antennas. Advanced functional materials, vol.25, no.3, 464-470.

  26. Hirsch, Arthur, Michaud, Hadrien O., Gerratt, Aaron P., de Mulatier, Séverine, Lacour, Stéphanie P.. Intrinsically Stretchable Biphasic (Solid–Liquid) Thin Metal Films. Advanced materials, vol.28, no.22, 4507-4512.

  27. Taylor, R E, Boyce, C M, Boyce, M C, Pruitt, B L. Planar patterned stretchable electrode arrays based on flexible printed circuits. Journal of micromechanics and microengineering.: structures, devices, and systems, vol.23, no.10, 105004-.

  28. Mariotti, Chiara, Cook, Benjamin S., Roselli, Luca, Tentzeris, Manos M.. State-of-the-Art Inkjet-Printed Metal-Insulator-Metal (MIM) Capacitors on Silicon Substrate. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.25, no.1, 13-15.

  29. 10.1109/APS.2014.6904497 

  30. Pfeiffer, U.R., Grzyb, J., Duixian Liu, Gaucher, B., Beukema, T., Floyd, B.A., Reynolds, S.K.. A chip-scale packaging technology for 60-GHz wireless chipsets. IEEE transactions on microwave theory and techniques, vol.54, no.8, 3387-3397.

  31. 10.1109/MWSYM.2016.7540084 

  32. Sangkil Kim, Shamim, Atif, Georgiadis, Apostolos, Aubert, Herve, Tentzeris, Manos M.. Fabrication of Fully Inkjet-Printed Vias and SIW Structures on Thick Polymer Substrates. IEEE transactions on components, packaging, and manufacturing technology, vol.6, no.3, 486-496.

  33. Cook, B. S., Cooper, J. R., Tentzeris, M. M.. Multi-Layer RF Capacitors on Flexible Substrates Utilizing Inkjet Printed Dielectric Polymers. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.23, no.7, 353-355.

  34. Parashkov, R., Becker, E., Riedl, T., Johannes, H.-H., Kowalsky, W.. Large Area Electronics Using Printing Methods. Proceedings of the IEEE, vol.93, no.7, 1321-1329.

  35. IEEE MTT-S Int Microw Symp Dig Wearable battery-free active paper-printed RFID tag with human-energy scavenger orecchini 2011 1 

  36. van den Brand, J., Kusters, R., Barink, M., Dietzel, A.. Flexible embedded circuitry: A novel process for high density, cost effective electronics. Microelectronic engineering, vol.87, no.10, 1861-1867.

  37. Berman, Barry. 3-D printing: The new industrial revolution. Business horizons, vol.55, no.2, 155-162.

  38. Hester, Jimmy G., Traille, Anya, Cook, Benjamin S., Tentzeris, Manos M., Kim, Sangkil, Bito, Jo, Le, Taoran, Kimionis, John, Revier, Daniel, Saintsing, Christy, Su, Wenjing, Tehrani, Bijan. Additively Manufactured Nanotechnology and Origami-Enabled Flexible Microwave Electronics. Proceedings of the IEEE, vol.103, no.4, 583-606.

  39. 10.1109/NANO.2011.6144291 

  40. Yang, Li, Rida, Amin, Tentzeris, Manos M.. Design and Development of Radio Frequency Identification (RFID) and RFID-Enabled Sensors on Flexible Low Cost Substrates. Synthesis lectures on rf/microwaves, vol.1, no.1, 1-89.

  41. Cook, B. S., Shamim, A.. Inkjet Printing of Novel Wideband and High Gain Antennas on Low-Cost Paper Substrate. IEEE transactions on antennas and propagation, vol.60, no.9, 4148-4156.

  42. Zhang, Y.P., Duixian Liu. Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications. IEEE transactions on antennas and propagation, vol.57, no.10, 2830-2841.

  43. MacKenzie, J. Devin, Ho, Christine. Perspectives on Energy Storage for Flexible Electronic Systems. Proceedings of the IEEE, vol.103, no.4, 535-553.

  44. 10.1109/MWSYM.2016.7540076 

  45. Jentzsch, A., Heinrich, W.. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz. IEEE transactions on microwave theory and techniques, vol.49, no.5, 871-878.

  46. Sani, Negar, Robertsson, Mats, Cooper, Philip, Wang, Xin, Svensson, Magnus, Andersson Ersman, Peter, Norberg, Petronella, Nilsson, Marie, Nilsson, David, Liu, Xianjie, Hesselbom, Hjalmar, Akesso, Laurent, Fahlman, Mats, Crispin, Xavier, Engquist, Isak, Berggren, Magnus, Gustafsson, Göran. All-printed diode operating at 1.6 GHz. Proceedings of the National Academy of Sciences of the United States of America, vol.111, no.33, 11943-11948.

  47. 10.1109/MWSYM.2014.6848575 

  48. Chen, Pochiang, Chen, Haitian, Qiu, Jing, Zhou, Chongwu. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano research, vol.3, no.8, 594-603.

  49. Sharma, Pawan, Bhatti, T.S.. A review on electrochemical double-layer capacitors. Energy conversion and management, vol.51, no.12, 2901-2912.

  50. Skucha, K., Fan, Z., Jeon, K., Javey, A., Boser, B.. Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sensors and actuators. B, Chemical, vol.145, no.1, 232-238.

  51. Nogi, Masaya, Komoda, Natsuki, Otsuka, Kanji, Suganuma, Katsuaki. Foldable nanopaper antennas for origami electronics. Nanoscale, vol.5, no.10, 4395-.

  52. Thrall, A.P., Quaglia, C.P.. Accordion shelters: A historical review of origami-like deployable shelters developed by the US military. Engineering structures, vol.59, 686-692.

  53. Kuribayashi, Kaori, Tsuchiya, Koichi, You, Zhong, Tomus, Dacian, Umemoto, Minoru, Ito, Takahiro, Sasaki, Masahiro. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Materials science & engineering. properties, microstructure and processing. A, Structural materials, vol.419, no.1, 131-137.

  54. Qi, Pengfei, Vermesh, Ophir, Grecu, Mihai, Javey, Ali, Wang, Qian, Dai, Hongjie, Peng, Shu, Cho, K. J.. Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.3, no.3, 347-351.

  55. Bittencourt, C., Felten, A., Espinosa, E.H., Ionescu, R., Llobet, E., Correig, X., Pireaux, J.-J.. WO3 films modified with functionalised multi-wall carbon nanotubes: Morphological, compositional and gas response studies. Sensors and actuators. B, Chemical, vol.115, no.1, 33-41.

  56. Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S., Cheng, M.M.C.. Carbon dioxide gas sensor using a graphene sheet. Sensors and actuators. B, Chemical, vol.157, no.1, 310-313.

  57. Jang, J., Ha, J., Cho, J.. Fabrication of Water-Dispersible Polyaniline-Poly(4-styrenesulfonate) Nanoparticles For Inkjet-Printed Chemical-Sensor Applications. Advanced materials, vol.19, no.13, 1772-1775.

  58. Lu, Yijiang, Li, Jing, Han, Jie, Ng, H.-T., Binder, Christie, Partridge, Christina, Meyyappan, M.. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chemical physics letters, vol.391, no.4, 344-348.

  59. Novak, J. P., Snow, E. S., Houser, E. J., Park, D., Stepnowski, J. L., McGill, R. A.. Nerve agent detection using networks of single-walled carbon nanotubes. Applied physics letters, vol.83, no.19, 4026-4028.

  60. Nano-material based flexible radio frequency sensors for wearable health and environment monitoring: Designs and prototypes utilizing 3D/inkjet printing technologies le 2016 

  61. Schoenlinner, B., Abbaspour-Tamijani, A., Kempel, L.C., Rebeiz, G.M.. Switchable low-loss RF MEMS Ka-band frequency-selective surface. IEEE transactions on microwave theory and techniques, vol.52, no.11, 2474-2481.

  62. Mias, C.. Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.15, no.9, 570-572.

  63. Meng Li, Bin Yu, Behdad, N. Liquid-Tunable Frequency Selective Surfaces. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.20, no.8, 423-425.

  64. Lima, A.C.deC., Parker, E.A., Langley, R.J.. Tunable frequency selective surface using liquid substrates. Electronics letters, vol.30, no.4, 281-282.

  65. Bossard, J.A., Xiaotao Liang, Ling Li, Seokho Yun, Werner, D.H., Weiner, B., Mayer, T.S., Cristman, P.F., Diaz, A., Khoo, I.C.. Tunable Frequency Selective Surfaces and Negative-Zero-Positive Index Metamaterials Based on Liquid Crystals. IEEE transactions on antennas and propagation, vol.56, no.5, 1308-1320.

  66. Chang, T.K., Langley, R.J., Parker, E.A.. Frequency selective surfaces on biased ferrite substrates. Electronics letters, vol.30, no.15, 1193-1194.

  67. Wei, Z. Y., Guo, Z. V., Dudte, L., Liang, H. Y., Mahadevan, L.. Geometric Mechanics of Periodic Pleated Origami. Physical review letters, vol.110, no.21, 215501-.

  68. IEEE MTT-S Int Microw Symp Dig Reconfigurable helical antenna based on an origami structure for wireless communication system liu 2014 1 

  69. Li Yang, Rida, A., Vyas, R., Tentzeris, M.M.. RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology. IEEE transactions on microwave theory and techniques, vol.55, no.12, 2894-2901.

  70. 10.1115/DETC2013-13378 

  71. 10.1007/978-0-387-74363-9_6 

  72. Su, Wenjing, Cook, Benjamin S., Fang, Yunnan, Tentzeris, Manos M.. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. Scientific reports, vol.6, 35111-.

  73. 10.1109/EuMC.2014.6986356 

  74. Proc Appl Electromagn Conf Microwave dielectric relaxation study of 1-hexanol with 1-propenol mixture by using time domain reflectometry at 300K tidar 2009 1 

  75. Entesari, Kamran, Saghati, Alireza Pourghorban. Fluidics in Microwave Components. IEEE microwave magazine, vol.17, no.6, 50-75.

  76. Nigmatullin, R.R., Abdul-Gader Jafar, M.M., Shinyashiki, Naoki, Sudo, Seiichi, Yagihara, Shin. Recognition of a new permittivity function for glycerol by the use of the eigen-coordinates method. Journal of non-crystalline solids, vol.305, no.1, 96-111.

  77. Mariotti, Chiara, Wenjing Su, Cook, Benjamin S., Roselli, Luca, Tentzeris, Manos M.. Development of Low Cost, Wireless, Inkjet Printed Microfluidic RF Systems and Devices for Sensing or Tunable Electronics. IEEE sensors journal, vol.15, no.6, 3156-3163.

  78. Petong, P., Pottel, R., Kaatze, U.. Dielectric Relaxation of H-Bonded Liquids. Mixtures of Ethanol and n-Hexanol at Different Compositions and Temperatures. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory, vol.103, no.31, 6114-6121.

  79. Whitesides, George M.. The origins and the future of microfluidics. Nature, vol.442, no.7101, 368-373.

  80. Proc Int Workshop on Wearable and Implantable Body Sensor Networks Sensing sweat in real-time using wearable microfluidics benito-lopez 2010 

  81. 10.1109/EuMC.2015.7345899 

  82. Reyes, D. R., Iossifidis, D., Auroux, P.-A., Manz, A.. Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Analytical chemistry, vol.74, no.12, 2623-2636.

  83. 10.1109/APS.2016.7696686 

  84. Hao, Yang, Foster, Robert. Wireless body sensor networks for health-monitoring applications. Physiological measurement, vol.29, no.11, R27-R56.

  85. Proc Int Conf Miniaturized Syst Chemistry Life Sci Low-cost flexible all-inkjet-printed microfluidic sensor su 2015 1 

  86. Duffy, D. C., McDonald, J. C., Schueller, O. J. A., Whitesides, G. M.. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical chemistry, vol.70, no.23, 4974-4984.

  87. Ebrahimi, Amir, Withayachumnankul, Withawat, Al-Sarawi, Said, Abbott, Derek. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE sensors journal, vol.14, no.5, 1345-1351.

  88. Whitesides, George M., Stroock, Abraham D.. Flexible Methods for Microfluidics. Physics today, vol.54, no.6, 42-48.

  89. 10.1109/APS.2016.7695943 

  90. 10.1109/EuMC.2015.7345691 

  91. Proc Eur Conf Antennas Propagation A low-cost inkjet-printed microfluidics-based tunable loop antenna feed by microfluidics-based tunable balun su 2015 1 

  92. 10.1109/APS.2014.6904757 

  93. Cook, Benjamin S., Tehrani, Bijan, Cooper, James R., Tentzeris, Manos M.. Multilayer Inkjet Printing of Millimeter-Wave Proximity-Fed Patch Arrays on Flexible Substrates. IEEE antennas and wireless propagation letters, vol.12, 1351-1354.

  94. Cook, B. S., Cooper, J. R., Tentzeris, M. M.. Multi-Layer RF Capacitors on Flexible Substrates Utilizing Inkjet Printed Dielectric Polymers. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.23, no.7, 353-355.

  95. Ko, S.H., Chung, J., Pan, H., Grigoropoulos, C.P., Poulikakos, D.. Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sensors and actuators. A, Physical, vol.134, no.1, 161-168.

  96. Subramanian, V., Chang, P.C., Lee, J.B., Molesa, S.E., Volkman, S.K.. Printed organic transistors for ultra-low-cost RFID applications. IEEE transactions on components and packaging technologies : a publication of the IEEE Components, Packaging, and Manufacturing Technology Society, vol.28, no.4, 742-747.

  97. Onses, M. Serdar, Sutanto, Erick, Ferreira, Placid M., Alleyne, Andrew G., Rogers, John A.. Mechanisms, Capabilities, and Applications of High‐Resolution Electrohydrodynamic Jet Printing. Small, vol.11, no.34, 4237-4266.

  98. Tehrani, B.K., Mariotti, C., Cook, B.S., Roselli, L., Tentzeris, M.M.. Development, characterization, and processing of thin and thick inkjet-printed dielectric films. Organic electronics, vol.29, 135-141.

  99. 10.1109/MWSYM.2016.7540411 

  100. Fouletier, J.. Gas analysis with potentiometric sensors. a review. Sensors and actuators, vol.3, 295-314.

  101. Li Yang, Rongwei Zhang, Staiculescu, D., Wong, C.P., Tentzeris, M.M.. A Novel Conformal RFID-Enabled Module Utilizing Inkjet-Printed Antennas and Carbon Nanotubes for Gas-Detection Applications. IEEE antennas and wireless propagation letters, vol.8, 653-656.

  102. Stetter, J. R., Li, J.. Amperometric Gas Sensors&sbd;A Review. Chemical reviews, vol.108, no.2, 352-366.

  103. Khan, Munawar M., Tahir, Farooq A., Farooqui, M. F., Shamim, Atif, Cheema, Hammad M.. 3.56-bits/cm $^2$ Compact Inkjet Printed and Application Specific Chipless RFID Tag. IEEE antennas and wireless propagation letters, vol.15, 1109-1112.

  104. Wallgren, Kirsi, Sotiropoulos, Sotiris. Oxygen sensors based on a new design concept for amperometric solid state devices. Sensors and actuators. B, Chemical, vol.60, no.2, 174-183.

  105. Rezaiesarlak, Reza, Manteghi, Majid. A Space-Frequency Technique for Chipless RFID Tag Localization. IEEE transactions on antennas and propagation, vol.62, no.11, 5790-5797.

  106. Printed gas sensor stetter 2010 

  107. Erkal, Jayda L., Selimovic, Asmira, Gross, Bethany C., Lockwood, Sarah Y., Walton, Eric L., McNamara, Stephen, Martin, R. Scott, Spence, Dana M.. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab on a chip, vol.14, no.12, 2023-2032.

  108. Abe, Koji, Suzuki, Koji, Citterio, Daniel. Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Analytical chemistry, vol.80, no.18, 6928-6934.

  109. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M.. Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.3, no.7, 929-933.

  110. Jenkins, Gareth, Wang, Yang, Xie, Ye Lei, Wu, Qiong, Huang, Wei, Wang, Linghai, Yang, Xin. Printed electronics integrated with paper-based microfluidics: new methodologies for next-generation health care. Microfluidics and Nanofluidics, vol.19, no.2, 251-261.

  111. Nair, R. S., Perret, E., Tedjini, S., Baron, T.. A Group-Delay-Based Chipless RFID Humidity Tag Sensor Using Silicon Nanowires. IEEE antennas and wireless propagation letters, vol.12, 729-732.

  112. Jung, Younsu, Park, Hyejin, Park, Jin-Ah, Noh, Jinsoo, Choi, Yunchang, Jung, Minhoon, Jung, Kyunghwan, Pyo, Myungho, Chen, Kevin, Javey, Ali, Cho, Gyoujin. Fully printed flexible and disposable wireless cyclic voltammetry tag. Scientific reports, vol.5, 8105-.

  113. Brattain, Walter H., Bardeen, John. Surface Properties of Germanium. The Bell System technical journal, vol.32, no.1, 1-41.

  114. Occhiuzzi, C., Rida, A., Marrocco, G., Tentzeris, M.. RFID Passive Gas Sensor Integrating Carbon Nanotubes. IEEE transactions on microwave theory and techniques, vol.59, no.10, 2674-2684.

  115. Yunfeng Ling, Hongtao Zhang, Guiru Gu, Xuejun Lu, Kayastha, Vijaya, Jones, Carissa S., Wu-Sheng Shih, Janzen, Daniel C.. A Printable CNT-Based FM Passive Wireless Sensor Tag on a Flexible Substrate With Enhanced Sensitivity. IEEE sensors journal, vol.14, no.4, 1193-1197.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로