$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature

Journal of alloys and compounds, v.709, 2017년, pp.322 - 328  

Ma, Xinkai (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) ,  Li, Fuguo (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) ,  Zhao, Chen (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) ,  Zhu, Guang (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) ,  Li, Weina (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) ,  Sun, Zhankun (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) ,  Yuan, Zhanwei (School of Materials Science and Engineering, Chang'an Univ)

Abstract AI-Helper 아이콘AI-Helper

Abstract Indentation creep behavior at room temperature and its mechanism of Ti-10V-2Fe-3Al alloy with dual phase structure were investigated. Micro-indentation creep tests were performed under the maximum indenter load ranging from 1500 mN to 4500 mN and the holding time of 300 s. The effect of in...

Keyword

참고문헌 (41)

  1. Mater. Sci. Eng. A Li 528 5854 2011 10.1016/j.msea.2011.03.107 Influence of α morphology and volume fraction on the stress-induced martensitic transformation in Ti-10V-2Fe-3Al 

  2. Scr. Mater. Akanuma 67 21 2012 10.1016/j.scriptamat.2012.03.011 Enhancement of athermal α″ martensitic transformation in Ti-10V-2Fe-3Al alloy due to high-speed hot deformation 

  3. J. Alloys Compd. Li 641 192 2015 10.1016/j.jallcom.2015.04.070 Effect of solution heat treatment on the stress-induced martensite transformation in two new titanium alloys 

  4. Mater. Sci. Eng. A Ouyang 619 26 2014 10.1016/j.msea.2014.09.067 Study on the dynamic recrystallization behavior of Ti-alloy Ti-10V-2Fe-3Al in β processing via experiment and simulation 

  5. J. Alloys Compd. Bobbili 696 295 2016 10.1016/j.jallcom.2016.11.208 A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy 

  6. Acta Mater. Chen 117 68 2016 10.1016/j.actamat.2016.06.065 Strong deformation anisotropies of ω -precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: precipitates shearing vs precipitates disordering 

  7. Mater. Sci. Eng. A Bobbili 667 33 2016 10.1016/j.msea.2016.04.083 Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures 

  8. Mater. Sci. Eng. A Ren 562 137 2013 10.1016/j.msea.2012.10.098 Mechanical response and effects of β - to -α” phase transformation on the strengthening of Ti-10V-2Fe-3Al during one-dimensional shock loading 

  9. Mater. Sci. Eng. A Ma 651 548 2016 10.1016/j.msea.2015.11.014 Nanoindentation investigation on the creep mechanism in metallic glassy films 

  10. Mater. Lett. Liu 70 26 2012 10.1016/j.matlet.2011.11.119 Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys 

  11. J. Alloys Compd. Shen 574 98 2013 10.1016/j.jallcom.2013.04.057 Creep behaviour of eutectic SnBi alloy and its constituent phases using nanoindentation technique 

  12. Mater. Sci. Eng. A Liu 676 73 2016 10.1016/j.msea.2016.08.111 Ambient-temperature nanoindentation creep in ultrafine-grained titanium processed by ECAP 

  13. Mater. Sci. Eng. A Ma 621 111 2014 10.1016/j.msea.2014.10.065 Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states 

  14. Scr. Mater. Ma 59 195 2008 10.1016/j.scriptamat.2008.03.014 Indentation scale dependence of tip-in creep behavior in Ni thin films 

  15. J. Mater. Sci. Ma 43 5952 2008 10.1007/s10853-008-2838-0 Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films 

  16. Intermetallics Wang 53 183 2014 10.1016/j.intermet.2014.05.007 Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi 

  17. Mater. Sci. Eng. A Kamta 652 315 2016 10.1016/j.msea.2015.11.098 Indentation creep analysis of T22 and T91 chromium based steels 

  18. Mater. Sci. Eng. A Haghshenas 676 20 2016 10.1016/j.msea.2016.08.091 On room-temperature nanoindentation response of an Al-Li-Cu alloy 

  19. Scr. Mater. Yoo 63 1205 2010 10.1016/j.scriptamat.2010.08.034 Room temperature creep in amorphous alloys: influence of initial strain and free volume 

  20. Int. J. Solids Struct. Chen 104 25 2017 10.1016/j.ijsolstr.2016.11.004 A combined inverse finite element - elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale 

  21. Acta Mater. Milman 59 7480 2011 10.1016/j.actamat.2011.08.027 Indentation size effect in nanohardness 

  22. Mater. Des. Sambhava 105 142 2016 10.1016/j.matdes.2016.05.036 Model based phenomenological and experimental investigation of nanoindentation creep in pure Mg and AZ61 alloy 

  23. Acta Mater. Hayes 50 4953 2002 10.1016/S1359-6454(02)00279-3 Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure 

  24. Acta Mater. Viswanathan 50 4965 2002 10.1016/S1359-6454(02)00280-X Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation 

  25. Acta Mater. Neeraj 48 1225 2000 10.1016/S1359-6454(99)00426-7 Phenomenological and microstructural analysis of room temperature creep in titanium alloys 

  26. Acta Mater. Hasija 51 4533 2003 10.1016/S1359-6454(03)00289-1 Deformation and creep modeling in polycrystalline Ti-6Al alloys 

  27. Int. J. Mech. Sci. N'Jock 90 145 2014 10.1016/j.ijmecsci.2014.11.008 A criterion to identify sinking-in and piling-up in indentation of materials 

  28. Metall. Mater. Trans. A Lucas 30 601 1999 10.1007/s11661-999-0051-7 Indentation power-law creep of high-purity indium 

  29. J. Mater. Res. Poisl 10 2024 1995 10.1557/JMR.1995.2024 The relationship between indentation and uniaxial creep in amorphous selenium 

  30. J. Mater. Res. Oliver 19 3 2004 10.1557/jmr.2004.19.1.3 Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology 

  31. J. Mater. Res. Chou 7 10 2631 1992 Mechanical properties and microstructures of metal/ceramic microlaminates: Part II. A Mo/Al2O3 system 

  32. J. Alloys Compd. Hu 647 670 2015 10.1016/j.jallcom.2015.06.094 Effects of loading strain rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20 wt.%Fe and Ni 

  33. J. Mech. Phys. Solids Su 61 517 2013 10.1016/j.jmps.2012.09.009 Measurement of power-law creep parameters by instrumented indentation methods 

  34. Mater. Sci. Eng. A Shen 532 505 2012 10.1016/j.msea.2011.11.016 Nanoindentation creep of tin and aluminium: a comparative study between constant load and constant strain rate methods 

  35. Acta Metall. Mater. Li 39 3099 1991 10.1016/0956-7151(91)90043-Z The mechanisms of indentation creep 

  36. J. Alloys Compd. Wang 696 239 2017 10.1016/j.jallcom.2016.11.264 Time-dependent shear transformation zone in thin film metallic glasses revealed by nanoindentation creep 

  37. Acta Mater. Schwaiger 23 5159 2003 10.1016/S1359-6454(03)00365-3 Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel 

  38. J. Solid State Chem. Abzianidze 154 191 2000 10.1006/jssc.2000.8834 Strength and creep in boron carbide (B4C) and aluminum dodecaboride (α-AlB12) 

  39. Metall. Mater. Trans. A Han 35 1343 2004 10.1007/s11661-004-0309-z Dislocation structure and deformation in iron processed by equal-channel-angular pressing 

  40. J. Mech. Phys. Solids Nix 46 411 1998 10.1016/S0022-5096(97)00086-0 Indentation size effects in crystalline materials: a law for strain gradient plasticity 

  41. Acta Mater. Dean 80 56 2014 10.1016/j.actamat.2014.07.054 A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로