최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of alloys and compounds, v.709, 2017년, pp.322 - 328
Ma, Xinkai (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) , Li, Fuguo (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) , Zhao, Chen (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) , Zhu, Guang (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) , Li, Weina (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) , Sun, Zhankun (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) , Yuan, Zhanwei (School of Materials Science and Engineering, Chang'an Univ)
Abstract Indentation creep behavior at room temperature and its mechanism of Ti-10V-2Fe-3Al alloy with dual phase structure were investigated. Micro-indentation creep tests were performed under the maximum indenter load ranging from 1500 mN to 4500 mN and the holding time of 300 s. The effect of in...
Mater. Sci. Eng. A Li 528 5854 2011 10.1016/j.msea.2011.03.107 Influence of α morphology and volume fraction on the stress-induced martensitic transformation in Ti-10V-2Fe-3Al
Scr. Mater. Akanuma 67 21 2012 10.1016/j.scriptamat.2012.03.011 Enhancement of athermal α″ martensitic transformation in Ti-10V-2Fe-3Al alloy due to high-speed hot deformation
J. Alloys Compd. Li 641 192 2015 10.1016/j.jallcom.2015.04.070 Effect of solution heat treatment on the stress-induced martensite transformation in two new titanium alloys
Mater. Sci. Eng. A Ouyang 619 26 2014 10.1016/j.msea.2014.09.067 Study on the dynamic recrystallization behavior of Ti-alloy Ti-10V-2Fe-3Al in β processing via experiment and simulation
J. Alloys Compd. Bobbili 696 295 2016 10.1016/j.jallcom.2016.11.208 A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy
Acta Mater. Chen 117 68 2016 10.1016/j.actamat.2016.06.065 Strong deformation anisotropies of ω -precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: precipitates shearing vs precipitates disordering
Mater. Sci. Eng. A Bobbili 667 33 2016 10.1016/j.msea.2016.04.083 Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures
Mater. Sci. Eng. A Ren 562 137 2013 10.1016/j.msea.2012.10.098 Mechanical response and effects of β - to -α” phase transformation on the strengthening of Ti-10V-2Fe-3Al during one-dimensional shock loading
Mater. Sci. Eng. A Ma 651 548 2016 10.1016/j.msea.2015.11.014 Nanoindentation investigation on the creep mechanism in metallic glassy films
Mater. Lett. Liu 70 26 2012 10.1016/j.matlet.2011.11.119 Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys
J. Alloys Compd. Shen 574 98 2013 10.1016/j.jallcom.2013.04.057 Creep behaviour of eutectic SnBi alloy and its constituent phases using nanoindentation technique
Mater. Sci. Eng. A Liu 676 73 2016 10.1016/j.msea.2016.08.111 Ambient-temperature nanoindentation creep in ultrafine-grained titanium processed by ECAP
Mater. Sci. Eng. A Ma 621 111 2014 10.1016/j.msea.2014.10.065 Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states
Scr. Mater. Ma 59 195 2008 10.1016/j.scriptamat.2008.03.014 Indentation scale dependence of tip-in creep behavior in Ni thin films
J. Mater. Sci. Ma 43 5952 2008 10.1007/s10853-008-2838-0 Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films
Intermetallics Wang 53 183 2014 10.1016/j.intermet.2014.05.007 Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi
Mater. Sci. Eng. A Kamta 652 315 2016 10.1016/j.msea.2015.11.098 Indentation creep analysis of T22 and T91 chromium based steels
Mater. Sci. Eng. A Haghshenas 676 20 2016 10.1016/j.msea.2016.08.091 On room-temperature nanoindentation response of an Al-Li-Cu alloy
Scr. Mater. Yoo 63 1205 2010 10.1016/j.scriptamat.2010.08.034 Room temperature creep in amorphous alloys: influence of initial strain and free volume
Int. J. Solids Struct. Chen 104 25 2017 10.1016/j.ijsolstr.2016.11.004 A combined inverse finite element - elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale
Acta Mater. Milman 59 7480 2011 10.1016/j.actamat.2011.08.027 Indentation size effect in nanohardness
Mater. Des. Sambhava 105 142 2016 10.1016/j.matdes.2016.05.036 Model based phenomenological and experimental investigation of nanoindentation creep in pure Mg and AZ61 alloy
Acta Mater. Hayes 50 4953 2002 10.1016/S1359-6454(02)00279-3 Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure
Acta Mater. Viswanathan 50 4965 2002 10.1016/S1359-6454(02)00280-X Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation
Acta Mater. Neeraj 48 1225 2000 10.1016/S1359-6454(99)00426-7 Phenomenological and microstructural analysis of room temperature creep in titanium alloys
Acta Mater. Hasija 51 4533 2003 10.1016/S1359-6454(03)00289-1 Deformation and creep modeling in polycrystalline Ti-6Al alloys
Int. J. Mech. Sci. N'Jock 90 145 2014 10.1016/j.ijmecsci.2014.11.008 A criterion to identify sinking-in and piling-up in indentation of materials
Metall. Mater. Trans. A Lucas 30 601 1999 10.1007/s11661-999-0051-7 Indentation power-law creep of high-purity indium
J. Mater. Res. Poisl 10 2024 1995 10.1557/JMR.1995.2024 The relationship between indentation and uniaxial creep in amorphous selenium
J. Mater. Res. Oliver 19 3 2004 10.1557/jmr.2004.19.1.3 Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology
J. Mater. Res. Chou 7 10 2631 1992 Mechanical properties and microstructures of metal/ceramic microlaminates: Part II. A Mo/Al2O3 system
J. Alloys Compd. Hu 647 670 2015 10.1016/j.jallcom.2015.06.094 Effects of loading strain rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20 wt.%Fe and Ni
J. Mech. Phys. Solids Su 61 517 2013 10.1016/j.jmps.2012.09.009 Measurement of power-law creep parameters by instrumented indentation methods
Mater. Sci. Eng. A Shen 532 505 2012 10.1016/j.msea.2011.11.016 Nanoindentation creep of tin and aluminium: a comparative study between constant load and constant strain rate methods
Acta Metall. Mater. Li 39 3099 1991 10.1016/0956-7151(91)90043-Z The mechanisms of indentation creep
J. Alloys Compd. Wang 696 239 2017 10.1016/j.jallcom.2016.11.264 Time-dependent shear transformation zone in thin film metallic glasses revealed by nanoindentation creep
Acta Mater. Schwaiger 23 5159 2003 10.1016/S1359-6454(03)00365-3 Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel
J. Solid State Chem. Abzianidze 154 191 2000 10.1006/jssc.2000.8834 Strength and creep in boron carbide (B4C) and aluminum dodecaboride (α-AlB12)
Metall. Mater. Trans. A Han 35 1343 2004 10.1007/s11661-004-0309-z Dislocation structure and deformation in iron processed by equal-channel-angular pressing
J. Mech. Phys. Solids Nix 46 411 1998 10.1016/S0022-5096(97)00086-0 Indentation size effects in crystalline materials: a law for strain gradient plasticity
Acta Mater. Dean 80 56 2014 10.1016/j.actamat.2014.07.054 A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.