최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of process control, v.54, 2017년, pp.152 - 171
Wang, K. , Chen, J. , Song, Z.
This paper develops a sensor fault diagnosis (SFD) scheme for a multi-input and multi-output linear dynamic system under feedback control to identify different types of sensor faults (bias, drift and precision degradation), particularly for the incipient sensor faults. Feedback control, leading to f...
IEEE Kourti 22 5 10 2002 Process analysis and abnormal situation detection: from theory to practice Control Systems
J. Process Control Du 38 42 2016 10.1016/j.jprocont.2015.12.007 Integration of fault diagnosis and control based on a trade-off between fault detectability and closed loop performance
Smart Mater. Struct. Gaetan 14 1 36 2005 10.1088/0964-1726/14/1/004 Sensor validation using principal component analysis
Chemom. Intell. Lab. Syst. Changkyu 70 165 2004 10.1016/j.chemolab.2003.10.011 Sensor fault identification based on time-lagged PCA in dynamic process
Pike 1992 Commissioning of BEMS: Code of Practice
Broen 1974 IEEE Conference on A nonlinear voter-estimator for redundant systems. in Decision and Control including the 13th Symposium on Adaptive Processes
J. Process Control Yoon 11 4 387 2001 10.1016/S0959-1524(00)00008-1 Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
J. Process Control Ding 24 2 431 2014 10.1016/j.jprocont.2013.08.011 Data-driven design of monitoring and diagnosis systems for dynamic processes: a review of subspace technique based schemes and some recent results
Fagarasan 2008 Parity Equations for Fault Detection and Isolation
Int. J. Control Autom. Syst. Jia 13 2 274 2015 10.1007/s12555-014-0098-0 Robust observer-based sensor fault reconstruction for discrete-time systems via a descriptor system approach
Comput. Chem.Eng. Venkatasubramanian 27 3 293 2003 10.1016/S0098-1354(02)00160-6 A review of process fault detection and diagnosis: part I: Quantitative model-based methods
Ljung 1998 System Identification
J. Process Control Huang 15 1 53 2005 10.1016/j.jprocont.2004.04.007 Closed-loop subspace identification: an orthogonal projection approach
Signal Process Ljung 52 2 209 1996 10.1016/0165-1684(96)00054-0 Subspace identification from closed loop data
Automatica Gilson 41 2 241 2005 10.1016/j.automatica.2004.09.016 Instrumental variable methods for closed-loop system identification
Van den Hof 1996 Proceedings of the 35th IEEE Conference Multivariable closed-loop identification: from indirect identification to dual-Youla parametrization. in Decision and Control
Automatica Wang 42 2 315 2006 10.1016/j.automatica.2005.09.012 Closed-loop subspace identification using the parity space
AIChE J. Qin 47 7 1581 2001 10.1002/aic.690470711 Detection and identification of faulty sensors in dynamic processes
Annu. Rev. Control Qin 36 2 220 2012 10.1016/j.arcontrol.2012.09.004 Survey on data-driven industrial process monitoring and diagnosis
AIChE J. Zhou 56 1 168 2010 10.1002/aic.11977 Total projection to latent structures for process monitoring
Comput. Chem. Eng. Simoglou 23 S277 1999 10.1016/S0098-1354(99)80068-4 Dynamic multivariate statistical process control using partial least squares and canonical variate analysis
IEEE Trans. Li 61 11 6438 2014 A new method of dynamic latent-variable modeling for process monitoring. Industrial Electronics
Ding 2014 Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems
Control Eng. Pract. MacGregor 3 3 403 1995 10.1016/0967-0661(95)00014-L Statistical process control of multivariate processes
J. Chemom. Joe Qin 17 8-9 480 2003 10.1002/cem.800 Statistical process monitoring: basics and beyond
AIChE J. Qin 60 9 3092 2014 10.1002/aic.14523 Process data analytics in the era of big data
AIChE J. Gertler 50 2 388 2004 10.1002/aic.10035 PCA-based fault diagnosis in the presence of control and dynamics
Ind. Eng. Chem. Res. McNabb 44 8 2359 2005 10.1021/ie049570o Fault diagnosis in the feedback-invariant subspace of closed-loop systems
J. Process Control Wan 22 1 26 2012 10.1016/j.jprocont.2011.10.013 Data-driven diagnosis of sensor precision degradation in the presence of control
Oakland 2017 Statistical Process Control
Chem. Eng. Res. Des. Skogestad 75 6 539 1997 10.1205/026387697524092 Dynamics and control of distillation columns: a tutorial introduction
Skogestad Vol. 2 2007
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.