$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A new bridgeless buck PFC rectifier

International journal of circuit theory and applications, v.45 no.5, 2017년, pp.707 - 719  

Hwu, K. I. (Department of Electrical Engineering, National Taipei University of Technology, Taiwan) ,  Shieh, Jenn‐Jong (Department of Electrical and Electronic Engineering, Ta Hwa University of Science and Technology, Taiwan) ,  Jiang, W. Z. (Department of Electrical Engineering, National Taipei University of Technology, Taiwan)

Abstract AI-Helper 아이콘AI-Helper

SummaryIn this study, a new bridgeless buck power factor correction (PFC) rectifier is presented. The proposed buck PFC rectifier is designed to operate in the discontinuous conduction mode (DCM). Because of the DCM operation, the control scheme of the proposed buck PFC rectifier is simple and easy,...

주제어

참고문헌 (43)

  1. IEC61000‐3‐2, Electromagnetic compatibility (EMC)‐Part3‐2: Limits—Limits for harmonic current emissions (equipment input current ≤ 16 A per phase) , 2005 . 

  2. Sakthivel KN , Das SK , Kini KR . Importance of quality AC power distribution and understanding of EMC standards IEC 61000‐3‐2, IEC 61000‐3‐3 & IEC 61000‐3‐11 . IEEE ICEMIC ' 03 , 2003 ; 423–430. 

  3. Prasad AR , Ziogas PD , Mania S . A novel passive waveshaping method for single‐phase diode rectifiers . IEEE Transactions on Industrial Electronics 1990 ; 37 ( 6 ): 521 – 530 . 

  4. Farcas C , Petreus D , Simion E , Palaghita N , Juhos Z . A novel topology based on forward converter with passive power factor correction . IEEE ISSE ' 06 2006 ; 268–272. 

  5. Seidel AR , Bisogno FE , Pappis D , Dalla Costa MA , do Prado RN . Simple valley‐fill self‐oscillating electronic ballast with low crest factor using pulse‐frequency modulation . IEEE IAS ' 03 2003 ; 779–784. 

  6. Erickson RW , Maksimovic D . Fundamentals of Power Electronics ( 2nd edn ). SCI‐TECH : Norwell, MA, USA , 1999 . 

  7. Umesh S , Venkatesha L , Usha A . Active power factor correction technique for single phase full bridge rectifier . IEEE ICAECT ' 14 2014 ; 130–135. 

  8. Wu H , Ge H , Xu Y , Zhang W . The power factor correction of three‐phase to single‐phase matrix converter with an active power decoupling capacity . IEEE ITEC Asia‐Pacific ' 14 2014 ; 1–5. 

  9. Huber L , Jovanovic MM . Design‐oriented analysis and performance evaluation of clamped‐current‐boost input‐current shaper for universal‐input‐voltage range . IEEE Transactions on Power Electronics 1998 ; 13 ( 3 ): 528 – 537 . 

  10. Zhang J , Shao J , Xu P , Lee FC , Jovanovic MM . Evaluation of input current in the critical mode boost PFC converter for distributed power systems . IEEE APEC ' 01 2001 ; 130–136. 

  11. Zhang F , Xu J , Yang P , Yan T . Tri‐state boost PFC converter with high input power factor . IEEE IPEMC ' 12 2012 ; 626–1631. 

  12. Das P , Pahlevaninezhad M , Drobnik J , Moschopoulos G , Jain PK . A nonlinear controller based on a discrete energy function for an AC/DC boost PFC converter . IEEE Transactions on Power Electronics 2013 ; 28 ( 12 ): 5458 – 5476 . 

  13. Mahmud K , Tao L . Power factor correction by PFC boost topology using average current control method . IEEE GHTCE ' 13 2013 ; 16–20. 

  14. Pahlevani M , Shangzhi P , Eren S , Bakhshai A , Jain P . An adaptive nonlinear current observer for boost PFC AC/DC converters . IEEE Transactions on Industrial Electronics 2014 ; 61 ( 12 ): 6720 – 6729 . 

  15. Cheng W , Song J , Li H , Guo Y . Time‐varying compensation for peak current‐controlled PFC boost converter . IEEE Transactions on Power Electronics 2014 ; 30 ( 6 ): 3431 – 3437 . 

  16. Endo H , Yamashita T , Sugiura T . A high‐power‐factor buck converter . IEEE PESC ' 92 1992 ; 1071–1076. 

  17. Chen B , Xie Y‐X , Huang F , Chen J‐H . A novel single‐phase buck PFC converter based on one‐cycle control . IEEE IPEMC ' 06 2006 ; 1–5. 

  18. Keogh B , Young G , Wegner H , Gillmor C . Design considerations for high efficiency buck PFC with half‐bridge regulation stage . IEEE APEC ' 10 , 2010 ; 1384–1391. 

  19. Huber L , Gang L , Jovanovic MM . Design‐oriented analysis and performance evaluation of buck PFC front end . IEEE Transactions on Power Electronics 2010 ; 25 ( 1 ): 85 – 94 . 

  20. Wu X , Yang J , Zhang J , Xu M . Design considerations of soft‐switched buck PFC converter with constant on‐time (COT) control . IEEE Transactions on Power Electronics 2011 ; 26 ( 11 ): 3144 – 3152 . 

  21. Wu X , Yang J , Zhang J , Qian Z . Variable on‐time (VOT)‐controlled critical conduction mode buck PFC converter for high‐input AC/DC HB‐LED lighting applications . IEEE Transactions on Power Electronics 2012 ; 27 ( 11 ): 4530 – 4539 . 

  22. Zeng H , Zhang J . An improved control scheme for buck PFC converter for high efficiency adapter application . IEEE ECCE ' 12 2012 ; 4569–4576. 

  23. Lu DD‐C , Ki S‐K . Light‐load efficiency improvement in buck‐derived single‐stage single‐switch PFC converters . IEEE Transactions on Power Electronics 2013 ; 28 ( 5 ): 2105 – 2110 . 

  24. Xie X , Zhao C , Zheng L , Liu S . An improved buck PFC converter with high power factor . IEEE Transactions on Power Electronics 2013 ; 28 ( 5 ): 2277 – 2284 . 

  25. Ohnuma Y , Itoh JI . A novel single‐phase buck PFC AC–DC converter with power decoupling capability using an active buffer . IEEE Transactions on Industry Applications 2014 ; 50 ( 3 ): 1905 – 1914 . 

  26. Nishida Y , Motegi S , Maeda A . A single‐phase buck‐boost AC‐to‐DC converter with high‐quality input and output waveforms . IEEE ISIE ' 95 1995 ; 433–438. 

  27. Morizane T , Shimomori W , Taniguchi K , Kimura N , Ogawa M . PWM technique for non‐isolated three‐phase soft‐switching buck‐boost PFC converter . IEEE PCCON ' 07 2007 ; 1280–1285. 

  28. He M , Zhang F , Xu J , Yang P , Yan T . High‐efficiency two‐switch tri‐state buck‐boost power factor correction converter with fast dynamic response and low‐inductor current ripple . IET Power Electronics 2013 ; 6 ( 8 ): 1544 – 1554 . 

  29. Etz R , Patarau T , Petreus D . Comparison between digital average current mode control and digital one cycle control for a bridgeless PFC boost converter . IEEE SIITEM ' 12 , 2012 ; 211–215. 

  30. Huber L , Jang Y , Jovanovic MM . Performance evaluation of bridgeless PFC boost rectifiers . IEEE Transactions on Power Electronics 2008 ; 23 ( 3 ): 381 – 1390 . 

  31. Cao Guoen , Kim Hee‐Jun . A novel critical‐conduction‐mode bridgeless interleaved boost PFC rectifier . IEEE IPEC‐ECCE‐ASIA ' 14 , 2014 ; 2587–2592. 

  32. Wang H , Tang Y , Khaligh A . A bridgeless boost rectifier for low‐voltage energy harvesting applications . IEEE Transactions on Power Electronics 2013 ; 28 ( 11 ): 5206 – 5214 . 

  33. Fardoun AA , Khraim NM , Ismail EH , Sabzali AJ , Al‐Saffar MA . Bridgeless high power factor buck‐converter operating in discontinuous capacitor voltage mode . IEEE Transactions on Industry Applications 2014 ; 50 ( 5 ): 3457 – 3467 . 

  34. Tsai H‐Y , Hsia T‐H , Chen D . A family of zero‐voltage‐transition bridgeless power‐factor‐correction circuits with a zero‐current‐switching auxiliary switch . IEEE Transactions on Industrial Electronics 2011 ; 58 ( 5 ): 1848 – 1855 . 

  35. Su B , Zhang J , Lu Z . Totem‐pole boost bridgeless PFC rectifier with simple zero‐current detection and full‐range ZVS operating at the boundary of DCM/CCM . IEEE Transactions on Power Electronics 2011 ; 26 ( 2 ): 427 – 435 . 

  36. Sabzali AJ , Ismail EH , Al‐Saffar MA , Fardoun MA . A new bridgeless PFC Sepic and Cuk rectifiers with low conduction and switching losses . IEEE PEDS ' 09 2009 ; 550–556. 

  37. Mahdavi M , Farzanehfard H . Bridgeless SEPIC PFC rectifier with reduced components and conduction losses . IEEE Transactions on Industrial Electronics 2011 ; 58 ( 9 ): 4153 – 4160 . 

  38. Fardoun AA , Ismail EH , Sabzali AJ , Al‐Saffar MA . A comparison between three proposed bridgeless Cuk rectifiers and conventional topology for power factor correction . IEEE ICSET ' 10 2010 ; 1–6. 

  39. Liu Y‐C , Pan T‐F , Tseng P‐J , Huang C‐C , Lo Y‐K , Chiu H‐J . Study and implementation of a two‐phase interleaved bridgeless buck power factor corrector . IEEE IFEEC ' 13 2013 ; 42–47. 

  40. Jovanovic MM , Yungtaek J . Bridgeless high‐power‐factor buck converter . IEEE Transactions on Power Electronics 2011 ; 26 ( 2 ): 602 – 611 . 

  41. Ma H , Zheng C , Yu W , Lai J‐S (Jason) . A single‐stage integrated bridgeless AC/DC converter for electrolytic capacitor‐less LED lighting applications . International Journal of Circuit Theory and Applications 2015 ; 43 ( 6 ): 742 – 755 . 

  42. Wu K‐H , Chiu H‐J , Lo Y‐K . A single‐stage high power‐factor bridgeless AC‐LED driver for lighting applications . International Journal of Circuit Theory and Applications 2014 ; 42 ( 1 ): 96 – 109 . 

  43. Sebastian J , Cobos JA , Lopera JM , Uceda J . The determination of the boundaries between continuous and discontinuous conduction modes in PWM DC‐to‐DC converters used as power factor preregulators . IEEE Transactions on Power Electronics 1995 ; 10 ( 5 ): 574 – 582 . 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로