$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Noise Margin, Delay, and Power Model for Pseudo-CMOS TFT Logic Circuits

IEEE transactions on electron devices, v.64 no.6, 2017년, pp.2635 - 2642  

Zhao, Qinghang (Department of Electronic Engineering, Tsinghua University, Beijing, China) ,  Sun, Wenyu (Department of Electronic Engineering, Tsinghua University, Beijing, China) ,  Zhao, Jiaqing (Department of Electronic Engineering, National Engineering Laboratory of TFT-LCD Materials and Technologies, Shanghai Jiao Tong University, Shanghai, China) ,  Feng, Linrun (NeuDrive Limited, Macclesfield, U.K.) ,  Xu, Xiaoli (Department of Electronic Engineering, Tsinghua University, Beijing, China) ,  Liu, Wenjiang (Department of Electronic Engineering, National Engineering Laboratory of TFT-LCD Materials and Technologies, Shanghai Jiao Tong University, Shanghai, China) ,  Guo, Xiaojun (Department of Electronic Engineering, Tsinghua University, Beijing, China) ,  Liu, Yongpan ,  Yang, Huazhong

Abstract AI-Helper 아이콘AI-Helper

Flexibleelectronics based on thin-film transistors (TFTs) are promising in the area of Internet of Things and wearable devices, where the pseudo-CMOS logic is widely used in the unipolar TFT circuits. Though plenty of device models exist, analytical circuit-level models are still absent, preventing ...

참고문헌 (16)

  1. Jiaqing Zhao, Qingyu Cui, Xiaojun Guo. An Analytical Yield Model for Zero- $V_{\mathrm {GS}}$ -Load Thin-Film Transistor Logic Circuits. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.35, no.12, 1269-1271.

  2. Qinghang Zhao, Yongpan Liu, Jiaqing Zhao, Xiaojun Guo, Hehe Li, Huazhong Yang. Noise Margin Modeling for Zero- $V_{\text {GS}}$ Load TFT Circuits and Yield Estimation. IEEE transactions on electron devices, vol.63, no.2, 684-690.

  3. Yuanfeng Chen, Di Geng, Mativenga, Mallory, Hyoungsik Nam, Jin Jang. High-Speed Pseudo-CMOS Circuits Using Bulk Accumulation a-IGZO TFTs. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.36, no.2, 153-155.

  4. Kim, David K., Lai, Yuming, Diroll, Benjamin T., Murray, Christopher B., Kagan, Cherie R.. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nature communications, vol.3, 1216-.

  5. Lohstroh, J., Seevinck, E., de Groot, J.. Worst-case static noise margin criteria for logic circuits and their mathematical equivalence. IEEE journal of solid-state circuits, vol.18, no.6, 803-807.

  6. De Vusser, S., Genoe, J., Heremans, P.. Influence of transistor parameters on the noise margin of organic digital circuits. IEEE transactions on electron devices, vol.53, no.4, 601-610.

  7. 10.1109/ISSCC.2013.6487658 

  8. Myny, Kris, Rockele, Maarten, Chasin, Adrian, Duy-Vu Pham, Steiger, Jurgen, Botnaras, Silviu, Weber, Dennis, Herold, Bernhard, Ficker, Jurgen, van Putten, Bas Der, Gelinck, Gerwin H., Genoe, Jan, Dehaene, Wim, Heremans, Paul. Bidirectional Communication in an HF Hybrid Organic/Solution-Processed Metal-Oxide RFID Tag. IEEE transactions on electron devices, vol.61, no.7, 2387-2393.

  9. Nature Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors nomura 2004 432 488 

  10. Tsung-Ching Huang, Fukuda, K, Chun-Ming Lo, Yung-Hui Yeh, Sekitani, T, Someya, T, Kwang-Ting Cheng. Pseudo-CMOS: A Design Style for Low-Cost and Robust Flexible Electronics. IEEE transactions on electron devices, vol.58, no.1, 141-150.

  11. Ishida, K., Tsung-Ching Huang, Honda, K., Shinozuka, Y., Fuketa, H., Yokota, T., Zschieschang, U., Klauk, H., Tortissier, G., Sekitani, T., Toshiyoshi, H., Takamiya, M., Someya, T., Sakurai, T.. Insole Pedometer With Piezoelectric Energy Harvester and 2 V Organic Circuits. IEEE journal of solid-state circuits, vol.48, no.1, 255-264.

  12. Chang-Hyun Kim, Bonnassieux, Yvan, Horowitz, Gilles. Compact DC Modeling of Organic Field-Effect Transistors: Review and Perspectives. IEEE transactions on electron devices, vol.61, no.2, 278-287.

  13. Marinov, O., Deen, M.J., Zschieschang, U., Klauk, H.. Organic Thin-Film Transistors: Part I—Compact DC Modeling. IEEE transactions on electron devices, vol.56, no.12, 2952-2961.

  14. Feng, Linrun, Tang, Wei, Zhao, Jiaqing, Yang, Ruozhang, Hu, Wei, Li, Qiaofeng, Wang, Ruolin, Guo, Xiaojun. Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing. Scientific reports, vol.6, 20671-.

  15. Forrest, Stephen R.. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, vol.428, no.6986, 911-918.

  16. IEEE Trans Electron Devices Analytical models for delay and power analysis of zero- $V_{GS}$ load unipolar thin-film transistor logic circuits cui 2014 61 3838 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로