$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Aqueous‐phase ketonization of acetic acid over Zr/Mn mixed oxides

AIChE journal, v.63 no.7, 2017년, pp.2958 - 2967  

Wu, Kejing (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China) ,  Yang, Mingde (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China) ,  Chen, Yu (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China) ,  Pu, Weihua (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China) ,  Hu, Husheng (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China) ,  Wu, Yulong (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China)

Abstract AI-Helper 아이콘AI-Helper

Aqueous‐phase ketonization possesses significant advantages over gas‐ or organic‐phase ketonization for improved conversion efficiency of aqueous fraction accompanied by algal bio‐oil production. In this study, synthetized ZrO2 and Zr/Mn oxides are used for aqueous‐phas...

주제어

참고문헌 (52)

  1. Upadhye AA , Qi W , Huber GW. Conceptual process design: a systematic method to evaluate and develop renewable energy technologies . AIChE J. 2011 ; 57 : 2292 – 2301 . 

  2. Alonso DM , Wettstein SG , Dumesic JA. Bimetallic catalysts for upgrading of biomass to fuels and chemicals . Chem Soc Rev. 2012 ; 41 : 8075 – 8098 . 

  3. Chen Y , Wu YL , Hua DR , Li C , Harold MP , Wang JL , Yang MD. Thermochemical conversion of low‐lipid microalgae for the production of liquid fuels: challenges and opportunities . RSC Adv. 2015 ; 5 : 18673 – 18701 . 

  4. Saber M , Nakhshiniev B , Yoshikawa K. A review of production and upgrading of algal bio‐oil . Renew Sust Energ Rev. 2016 ; 58 : 918 – 930 . 

  5. Yu G , Zhang YH , Schideman L , Funk T , Wang ZC. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low‐lipid microalgae . Energy Environ Sci. 2011 ; 4 : 4587 – 4595 . 

  6. Gai C , Zhang YH , Chen WT , Zhou Y , Schideman L , Zhang P , Tommaso G , Kuo CT , Dong YP. Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa . Bioresour Technol. 2015 ; 184 : 328 – 335 . 

  7. Zhou D , Zhang LA , Zhang SC , Fu HB , Chen JM. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio‐oil . Energy Fuels 2010 ; 24 : 4054 – 4061 . 

  8. Madsen RB , Jensen MM , Morup AJ , Houlberg K , Christensen PS , Klemmer M , Becker J , Iversen BB , Glasius M. Using design of experiments to optimize derivatization with methyl chloroformate for quantitative analysis of the aqueous phase from hydrothermal liquefaction of biomass . Anal Bioanal Chem. 2016 ; 408 : 2171 – 2183 . 

  9. Maddi B , Panisko E , Albrecht K , Howe D. Qualitative characterization of the aqueous fraction from hydrothermal liquefaction of algae using 2D gas chromatography with time‐of‐flight mass spectrometry . J Vis Exp JoVE. 2016 ; 109 : e53634 . 

  10. Panisko E , Wietsma T , Lemmon T , Albrecht K , Howe D. Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks . Biomass Bioenergy 2015 ; 74 : 162 – 171 . 

  11. Xing R , Dagle VL , Flake M , Kovarik L , Albrecht KO , Deshmane C , Dagle RA. Steam reforming of fast pyrolysis‐derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl 2 O 4 . Catal Today 2016 ; 269 : 166 – 174 . 

  12. Pham TN , Shi DC , Sooknoi T , Resasco DE. Aqueous‐phase ketonization of acetic acid over Ru/TiO 2 /carbon catalysts . J Catal. 2012 ; 295 : 169 – 178 . 

  13. Wu KJ , Wu YL , Chen Y , Chen H , Wang JL , Yang MD. Heterogeneous catalytic conversion of biobased chemicals into liquid fuels in the aqueous phase . ChemSusChem. 2016 ; 9 : 1355 – 1385 . 

  14. Serrano‐Ruiz JC , Pineda A , Balu AM , Luque R , Campelo JM , Romero AA , Ramos‐Fernandez JM. Catalytic transformations of biomass‐derived acids into advanced biofuels . Catal Today 2012 ; 195 : 162 – 168 . 

  15. Huber GW , Chheda JN , Barrett CJ , Dumesic JA. Production of liquid alkanes by aqueous‐phase processing of biomass‐derived carbohydrates . Science 2005 ; 308 : 1446 – 1450 . 

  16. Wang SR , Chen JH , Cai QJ , Zhang F , Wang YR , Ru B , Wang Q. The effect of mild hydrogenation on the catalytic cracking of bio‐oil for aromatic hydrocarbon production . Int J Hydrogen Energy 2016 ; 41 : 16385 – 16393 . 

  17. Idesh S , Kudo S , Norinaga K , Hayashi J. Catalytic hydrothermal reforming of water‐soluble organics from the pyrolysis of biomass using a Ni/Carbon catalyst impregnated with Pt . Energy Fuels 2012 ; 26 : 67 – 74 . 

  18. Zhang LH , Champagne P , Xu CB. Supercritical water gasification of an aqueous by‐product from biomass hydrothermal liquefaction with novel Ru modified Ni catalysts . Bioresour Technol. 2011 ; 102 : 8279 – 8287 . 

  19. Wang SR , Cai QJ , Wang XY , Zhang L , Wang YR , Luo ZY. Biogasoline production by co‐cracking of model compound mixture of bio‐oil and ethanol over HSZM‐5 . Chinese J Catal. 2014 ; 35 : 709 – 722 . 

  20. Wang SR , Cai QJ , Wang XY , Guo ZG , Luo ZY. Bio‐gasoline production from co‐cracking of hydroxypropanone and ethanol . Fuel Process Technol. 2013 ; 111 : 86 – 93 . 

  21. Wang SR , Cai QJ , Zhang F , Li XB , Zhang L , Luo ZY. Hydrogen production via catalytic reforming of the bio‐oil model compounds: acetic acid, phenol and hydroxyacetone . Int J Hydrogen Energy 2014 ; 39 : 18675 – 18687 . 

  22. Wang SR , Li XB , Zhang F , Cai QJ , Wang YR , Luo ZY. Bio‐oil catalytic reforming without steam addition: application to hydrogen production and studies on its mechanism . Int J Hydrogen Energy 2013 ; 38 : 16038 – 16047 . 

  23. Pham TN , Sooknoi T , Crossley SP , Resasco DE. Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion . ACS Catal. 2013 ; 3 : 2456 – 2473 . 

  24. Glinski M , Kijenski J , Jakubowski A. Ketones from monocarboxylic acids—catalytic ketonization over oxide systems . Appl Catal A. 1995 ; 128 : 209 – 217 . 

  25. Pestman R , Koster RM , van Duijne A , Pieterse JAZ , Ponec V. Reactions of carboxylic acids on oxides. 2. Bimolecular reaction of aliphatic acids to ketones . J Catal. 1997 ; 168 : 265 – 272 . 

  26. Parida K , Mishra HK. Catalytic ketonisation of acetic acid over modified zirconia ‐ 1. Effect of alkali‐metal cations as promoter . J Mol Catal A Chem. 1999 ; 139 : 73 – 80 . 

  27. Nagashima O , Sato S , Takahashi R , Sodesawa T. Ketonization of carboxylic acids over CeO 2 ‐based composite oxides . J Mol Catal A Chem. 2005 ; 227 : 231 – 239 . 

  28. Gangadharan A , Shen M , Sooknoi T , Resasco DE , Mallinson RG. Condensation reactions of propanal over CexZr 1‐x O 2 mixed oxide catalysts . Appl Catal A. 2010 ; 385 : 80 – 91 . 

  29. Snell RW , Hakim SH , Dumesic JA , Shanks BH. Catalysis with ceria nanocrystals: bio‐oil model compound ketonization . Appl Catal A. 2013 ; 464 : 288 – 295 . 

  30. Snell RW , Shanks BH. Ceria calcination temperature influence on acetic acid ketonization: mechanistic insights . Appl Catal A. 2013 ; 451 : 86 – 93 . 

  31. Snell RW , Shanks BH. Insights into the ceria‐catalyzed ketonization reaction for biofuels applications . ACS Catal. 2013 ; 3 : 783 – 789 . 

  32. Pacchioni G. Ketonization of carboxylic acids in biomass conversion over TiO 2 and ZrO 2 surfaces: a DFT perspective . ACS Catal. 2014 ; 4 : 2874 – 2888 . 

  33. Snell RW , Shanks BH. CeMO x ‐promoted ketonization of biomass‐derived carboxylic acids in the condensed phase . ACS Catal. 2014 ; 4 : 512 – 518 . 

  34. Karimi E , Teixeira IF , Ribeiro LP , et al. Ketonization and deoxygenation of alkanoic acids and conversion of levulinic acid to hydrocarbons using a Red Mud bauxite mining waste as the catalyst . Catal Today 2012 ; 190 : 73 – 88 . 

  35. Pham TN , Shi DC , Resasco DE. Kinetics and mechanism of ketonization of acetic acid on Ru/TiO 2 catalyst . Top Catal. 2014 ; 57 : 706 – 714 . 

  36. Jackson MA. Ketonization of model pyrolysis bio‐oil solutions in a plug‐flow reactor over a mixed oxide of Fe, Ce, and Al . Energy Fuels 2013 ; 27 : 3936 – 3943 . 

  37. Zuo JL , Chen ZH , Wang FR , Yu YH , Wang LF , Li XH. Low‐temperature selective catalytic reduction of NO x with NH 3 over novel Mn‐Zr mixed oxide catalysts . Ind Eng Chem Res. 2014 ; 53 : 2647 – 2655 . 

  38. Zou SP , Wu YL , Yang MD , Li C , Tong JM. Bio‐oil production from sub‐ and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties . Energy Environ Sci. 2010 ; 3 : 1073 – 1078 . 

  39. Thirupathi B , Smirniotis PG. Nickel‐doped Mn/TiO 2 as an efficient catalyst for the low‐temperature SCR of NO with NH 3 : catalytic evaluation and characterizations . J Catal. 2012 ; 288 : 74 – 83 . 

  40. Qiu L , Meng JJ , Pang DD , Zhang CL , Ouyang F. Reaction and characterization of Co and Ce doped Mn/TiO 2 catalysts for low‐temperature SCR of NO with NH 3 . Catal Lett. 2015 ; 145 : 1500 – 1509 . 

  41. Gionco C , Paganini MC , Giamello E , Burgess R , Di Valentin C , Pacchioni G. Paramagnetic defects in polycrystalline zirconia: an EPR and DFT study . Chem Mater. 2013 ; 25 : 2243 – 2253 . 

  42. Stobbe ER , de Boer BA , Geus JW. The reduction and oxidation behaviour of manganese oxides . Catal Today 1999 ; 47 : 161 – 167 . 

  43. Nesbitt HW , Banerjee D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO 2 precipitation . Am Mineral. 1998 ; 83 : 305 – 315 . 

  44. Pena DA , Uphade BS , Smirniotis PG. TiO 2 ‐supported metal oxide catalysts for low‐temperature selective catalytic reduction of NO with NH 3 I. Evaluation and characterization of first row transition metals . J Catal. 2004 ; 221 : 421 – 431 . 

  45. Yan CL , Liu RJ , Cao YB , Zhang CR , Zhang DK. Synthesis of submicrometer zirconium carbide formed from inorganic‐organic hybrid precursor pyrolysis . J Sol‐Gel Sci Technol. 2012 ; 64 : 251 – 256 . 

  46. Watanabe M , Inomata H , Smith RL , Arai K. Catalytic decarboxylation of acetic acid with zirconia catalyst in supercritical water . Appl Catal A. 2001 ; 219 : 149 – 156 . 

  47. Jin X , Subramaniam B , Chaudhari RV , Thapa PS. Kinetic modeling of Pt/C catalyzed aqueous phase glycerol conversion with in situ formed hydrogen . AIChE J. 2016 ; 62 : 1162 – 1173 . 

  48. She X , Zhang XM , Liu JY , Li L , Yu XH , Huang ZL , Shang SM. Microwave‐assisted synthesis of Mn 3 O 4 nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors . Mater Res Bull. 2015 ; 70 : 945 – 950 . 

  49. Purohit RD , Saha S , Tyagi AK. Combustion synthesis of nanocrystalline ZrO 2 powder: XRD, Raman spectroscopy and TEM studies . Mater Sci Eng B. 2006 ; 130 : 57 – 60 . 

  50. Li C , Li MJ. UV Raman spectroscopic study on the phase transformation of ZrO 2 , Y 2 O 3 ‐ZrO 2 and SO42− /ZrO 2 . J Raman Spectrosc. 2002 ; 33 : 301 – 308 . 

  51. Panchenko VN , Zaytseva YA , Simonov MN , Simakova IL , Paukshtis EA. DRIFTS and UV‐vis DRS study of valeric acid ketonization mechanism over ZrO 2 in hydrogen atmosphere . J Mol Catal A Chem. 2014 ; 388 : 133 – 140 . 

  52. Foraita S , Fulton JL , Chase ZA , Vjunov A , Xu PH , Barath E , Camaioni DM , Zhao C , Lercher JA. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO 2 on the reduction rates of stearic acid on Ni/ZrO 2 . Chem Eur J. 2015 ; 21 : 2423 – 2434 . 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로